Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
110.40 96.40 101.90 106.20 81.00 94.70 101.00 109.40 102.30 90.70 96.20 96.10 106.00 103.10 102.00 104.70 86.00 92.10 106.90 112.60 101.70 92.00 97.40 97.00 105.40 102.70 98.10 104.50 87.40 89.90 109.80 111.70 98.60 96.90 95.10 97.00 112.70 102.90 97.40 111.40 87.40 96.80 114.10 110.30 103.90 101.60 94.60 95.90 104.70 102.80 98.10 113.90 80.90 95.70 113.20 105.90 108.80 102.30 99.00 100.70 115.50
Chart options
R Code
gp <- function(lambda, p) { (p^lambda-(1-p)^lambda)/lambda } sortx <- sort(x) c <- array(NA,dim=c(201)) for (i in 1:201) { if (i != 101) c[i] <- cor(gp(ppoints(x), lambda=(i-101)/100),sortx) } bitmap(file='test1.png') plot((-100:100)/100,c[1:201],xlab='lambda',ylab='correlation',main='PPCC Plot - Tukey lambda') grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Tukey Lambda - Key Values',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Distribution (lambda)',1,TRUE) a<-table.element(a,'Correlation',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Approx. Cauchy (lambda=-1)',header=TRUE) a<-table.element(a,c[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Exact Logistic (lambda=0)',header=TRUE) a<-table.element(a,(c[100]+c[102])/2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Approx. Normal (lambda=0.14)',header=TRUE) a<-table.element(a,c[115]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'U-shaped (lambda=0.5)',header=TRUE) a<-table.element(a,c[151]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Exactly Uniform (lambda=1)',header=TRUE) a<-table.element(a,c[201]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation