Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
109.20 88.60 94.30 98.30 86.40 80.60 104.10 108.20 93.40 71.90 94.10 94.90 96.40 91.10 84.40 86.40 88.00 75.10 109.70 103.00 82.10 68.00 96.40 94.30 90.00 88.00 76.10 82.50 81.40 66.50 97.20 94.10 80.70 70.50 87.80 89.50 99.60 84.20 75.10 92.00 80.80 73.10 99.80 90.00 83.10 72.40 78.80 87.30 91.00 80.10 73.60 86.40 74.50 71.20 92.40 81.50 85.30 69.90 84.20 90.70 100.30
Data Y:
72.50 59.40 85.70 88.20 62.80 87.00 79.20 112.00 79.20 132.10 40.10 69.00 59.40 73.80 57.40 81.10 46.60 41.40 71.20 67.90 72.00 145.50 39.70 51.90 73.70 70.90 60.80 61.00 54.50 39.10 66.60 58.50 59.80 80.90 37.30 44.60 48.70 54.00 49.50 61.60 35.00 35.70 51.30 49.00 41.50 72.50 42.10 44.10 45.10 50.30 40.90 47.20 36.90 40.90 38.30 46.30 28.40 78.40 36.80 50.70 42.80
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
bitmap(file='test1.png') histx <- hist(x, plot=FALSE) histy <- hist(y, plot=FALSE) maxcounts <- max(c(histx$counts, histx$counts)) xrange <- c(min(x),max(x)) yrange <- c(min(y),max(y)) nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE) par(mar=c(4,4,1,1)) plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab) par(mar=c(0,4,1,1)) barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0) par(mar=c(4,0,1,1)) barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE) dev.off() lx = length(x) makebiased = (lx-1)/lx varx = var(x)*makebiased vary = var(y)*makebiased corxy <- cor.test(x,y,method='pearson') cxy <- as.matrix(corxy$estimate)[1,1] load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Statistic',1,TRUE) a<-table.element(a,'Variable X',1,TRUE) a<-table.element(a,'Variable Y',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm','Mean',''),header=TRUE) a<-table.element(a,mean(x)) a<-table.element(a,mean(y)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/biased.htm','Biased Variance',''),header=TRUE) a<-table.element(a,varx) a<-table.element(a,vary) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/biased1.htm','Biased Standard Deviation',''),header=TRUE) a<-table.element(a,sqrt(varx)) a<-table.element(a,sqrt(vary)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/covariance.htm','Covariance',''),header=TRUE) a<-table.element(a,cov(x,y),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/pearson_correlation.htm','Correlation',''),header=TRUE) a<-table.element(a,cxy,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/coeff_of_determination.htm','Determination',''),header=TRUE) a<-table.element(a,cxy*cxy,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ttest_statistic.htm','T-Test',''),header=TRUE) a<-table.element(a,as.matrix(corxy$statistic)[1,1],2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value (2 sided)',header=TRUE) a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value (1 sided)',header=TRUE) a<-table.element(a,p2/2,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degrees of Freedom',header=TRUE) a<-table.element(a,lx-2,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Number of Observations',header=TRUE) a<-table.element(a,lx,2) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation