Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
92.58 93.15 93.7 93.34 93.93 94.41 94.3 94.44 96.09 95.99 96.23 95.64 94.88 95.48 95.52 96.18 96.82 96.81 96.25 96.24 96.95 96.25 96.04 95.78 95.86 96.02 96.34 96.84 96.73 96.34 96.6 96.64 97.2 97.5 96.99 97.08 97.55 98.42 98.78 97.49 96.99 97.16 97.29 97.8 98.12 98.03 98.11 98.07 98.21 98.48 98.83 99.2 99.88 99.71 100.03 100.6 100.85 101.96 101.4 100.81 100.66 101.55 102.23 102.9 102.68 103.41 104.62 104.93 105.88 105.18 104.54 104.58 104.34 104.66 104.73 105.44 105.72 105.68 105.9 105.97 105.21 104.75 104.89 105.26 104.84 105.47 105.4 105.73 105.72 105.63 105.97 105.92 106.32
Sample Range:
(leave blank to include all observations)
From:
To:
bandwidth of density plot
(?)
# lags (autocorrelation function)
(?)
0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Chart options
R Code
par1 <- as.numeric(par1) par2 <- as.numeric(par2) x <- as.ts(x) library(lattice) bitmap(file='pic1.png') plot(x,type='l',main='Run Sequence Plot',xlab='time or index',ylab='value') grid() dev.off() bitmap(file='pic2.png') hist(x) grid() dev.off() bitmap(file='pic3.png') if (par1 > 0) { densityplot(~x,col='black',main=paste('Density Plot bw = ',par1),bw=par1) } else { densityplot(~x,col='black',main='Density Plot') } dev.off() bitmap(file='pic4.png') qqnorm(x) grid() dev.off() if (par2 > 0) { bitmap(file='lagplot.png') dum <- cbind(lag(x,k=1),x) dum dum1 <- dum[2:length(x),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Lag plot, lowess, and regression line')) lines(lowess(z)) abline(lm(z)) dev.off() bitmap(file='pic5.png') acf(x,lag.max=par2,main='Autocorrelation Function') grid() dev.off() } summary(x) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Descriptive Statistics',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'# observations',header=TRUE) a<-table.element(a,length(x)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'minimum',header=TRUE) a<-table.element(a,min(x)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,quantile(x,0.25)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) a<-table.element(a,median(x)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) a<-table.element(a,mean(x)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,quantile(x,0.75)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'maximum',header=TRUE) a<-table.element(a,max(x)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation