Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
31514 27071 29462 26105 22397 23843 21705 18089 20764 25316 17704 15548 28029 29383 36438 32034 22679 24319 18004 17537 20366 22782 19169 13807 29743 25591 29096 26482 22405 27044 17970 18730 19684 19785 18479 10698 31956 29506 34506 27165 26736 23691 18157 17328 18205 20995 17382 9367 31124 26551 30651 25859 25100 25778 20418 18688 20424 24776 19814 12738 31566 30111 30019 31934 25826 26835
Sample Range:
(leave blank to include all observations)
From:
To:
Seasonal Period
12
12
4
6
12
Chart options
R Code
par1 <- as.numeric(par1) (n <- length(x)) (np <- floor(n / par1)) arr <- array(NA,dim=c(par1,np)) j <- 0 k <- 1 for (i in 1:(np*par1)) { j = j + 1 arr[j,k] <- x[i] if (j == par1) { j = 0 k=k+1 } } arr arr.mean <- array(NA,dim=np) arr.sd <- array(NA,dim=np) arr.range <- array(NA,dim=np) for (j in 1:np) { arr.mean[j] <- mean(arr[,j],na.rm=TRUE) arr.sd[j] <- sd(arr[,j],na.rm=TRUE) arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE) } arr.mean arr.sd arr.range (lm1 <- lm(arr.sd~arr.mean)) (lnlm1 <- lm(log(arr.sd)~log(arr.mean))) (lm2 <- lm(arr.range~arr.mean)) bitmap(file='test1.png') plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation') dev.off() bitmap(file='test2.png') plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range') dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Section',header=TRUE) a<-table.element(a,'Mean',header=TRUE) a<-table.element(a,'Standard Deviation',header=TRUE) a<-table.element(a,'Range',header=TRUE) a<-table.row.end(a) for (j in 1:np) { a<-table.row.start(a) a<-table.element(a,j,header=TRUE) a<-table.element(a,arr.mean[j]) a<-table.element(a,arr.sd[j] ) a<-table.element(a,arr.range[j] ) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'alpha',header=TRUE) a<-table.element(a,lm1$coefficients[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'beta',header=TRUE) a<-table.element(a,lm1$coefficients[[2]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,summary(lm1)$coefficients[2,2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,summary(lm1)$coefficients[2,3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,summary(lm1)$coefficients[2,4]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'alpha',header=TRUE) a<-table.element(a,lnlm1$coefficients[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'beta',header=TRUE) a<-table.element(a,lnlm1$coefficients[[2]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,summary(lnlm1)$coefficients[2,2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,summary(lnlm1)$coefficients[2,3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,summary(lnlm1)$coefficients[2,4]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Lambda',header=TRUE) a<-table.element(a,1-lnlm1$coefficients[[2]]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation