Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
11947.20 3423.40 12300.00 11714.10 3242.80 12092.80 12192.50 3277.20 12380.80 11268.80 3833.00 12196.90 9097.40 2606.30 9455.00 12639.80 3643.80 13168.00 13040.10 3686.40 13427.90 11687.30 3281.60 11980.50 11191.70 3669.30 11884.80 11391.90 3191.50 11691.70 11793.10 3512.70 12233.80 13933.20 3970.70 14341.40 12778.10 3601.20 13130.70 11810.30 3610.00 12421.10 13698.40 4172.10 14285.80 11956.60 3956.20 12864.60 10723.80 3142.70 11160.20 13938.90 3884.30 14316.20 13979.80 3892.20 14388.70 13807.40 3613.00 14013.90 12973.90 3730.50 13419.00 12509.80 3481.30 12769.60 12934.10 3649.50 13315.50 14908.30 4215.20 15332.90 13772.10 4066.60 14243.00 13012.60 4196.80 13824.40 14049.90 4536.60 14962.90 11816.50 4441.60 13202.90 11593.20 3548.30 12199.00 14466.20 4735.90 15508.90 13615.90 4130.60 14199.80 14733.90 4356.20 15169.60 13880.70 4159.60 14058.00 13527.50 3988.00 13786.20 13584.00 4167.80 14147.90 16170.20 4902.20 16541.70 13260.60 3909.40 13587.50 14741.90 4697.60 15582.40 15486.50 4308.90 15802.80 13154.50 4420.40 14130.50 12621.20 3544.20 12923.20 15031.60 4433.00 15612.20 15452.40 4479.70 16033.70 15428.00 4533.20 16036.60 13105.90 4237.50 14037.80 14716.80 4207.40 15330.60 14180.00 4394.00 15038.30 16202.20 5148.40 17401.80 14392.40 4202.20 14992.50 15140.60 4682.50 16043.70 15960.10 4884.30 16929.60 14351.30 5288.90 15921.30 13230.20 4505.20 14417.20 15202.10 4611.50 15961.00 17157.30 5081.10 17851.90 16159.10 4523.10 16483.90 13405.70 4412.80 14215.50 17224.70 4647.40 17429.70 17338.40 4778.60 17839.50 17370.60 4495.30 17629.20
Names of X columns:
extraEu IntraEU Vlaanderen
Method
ward
ward
single
complete
average
mcquitty
median
centroid
# of (top) clusters to display
ALL
ALL
2
3
4
5
6
7
8
9
10
15
20
Horizontal
FALSE
FALSE
TRUE
Triangle
FALSE
FALSE
TRUE
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
par3 <- as.logical(par3) par4 <- as.logical(par4) if (par3 == 'TRUE'){ dum = xlab xlab = ylab ylab = dum } x <- t(y) hc <- hclust(dist(x),method=par1) d <- as.dendrogram(hc) str(d) mysub <- paste('Method: ',par1) bitmap(file='test1.png') if (par4 == 'TRUE'){ plot(d,main=main,ylab=ylab,xlab=xlab,horiz=par3, nodePar=list(pch = c(1,NA), cex=0.8, lab.cex = 0.8),type='t',center=T, sub=mysub) } else { plot(d,main=main,ylab=ylab,xlab=xlab,horiz=par3, nodePar=list(pch = c(1,NA), cex=0.8, lab.cex = 0.8), sub=mysub) } dev.off() if (par2 != 'ALL'){ if (par3 == 'TRUE'){ ylab = 'cluster' } else { xlab = 'cluster' } par2 <- as.numeric(par2) memb <- cutree(hc, k = par2) cent <- NULL for(k in 1:par2){ cent <- rbind(cent, colMeans(x[memb == k, , drop = FALSE])) } hc1 <- hclust(dist(cent),method=par1, members = table(memb)) de <- as.dendrogram(hc1) bitmap(file='test2.png') if (par4 == 'TRUE'){ plot(de,main=main,ylab=ylab,xlab=xlab,horiz=par3, nodePar=list(pch = c(1,NA), cex=0.8, lab.cex = 0.8),type='t',center=T, sub=mysub) } else { plot(de,main=main,ylab=ylab,xlab=xlab,horiz=par3, nodePar=list(pch = c(1,NA), cex=0.8, lab.cex = 0.8), sub=mysub) } dev.off() str(de) } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Summary of Dendrogram',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Label',header=TRUE) a<-table.element(a,'Height',header=TRUE) a<-table.row.end(a) num <- length(x[,1])-1 for (i in 1:num) { a<-table.row.start(a) a<-table.element(a,hc$labels[i]) a<-table.element(a,hc$height[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') if (par2 != 'ALL'){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'Summary of Cut Dendrogram',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Label',header=TRUE) a<-table.element(a,'Height',header=TRUE) a<-table.row.end(a) num <- par2-1 for (i in 1:num) { a<-table.row.start(a) a<-table.element(a,i) a<-table.element(a,hc1$height[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation