Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
98.8 100.5 110.4 96.4 101.9 106.2 81 94.7 101 109.4 102.3 90.7 96.2 96.1 106 103.1 102 104.7 86 92.1 106.9 112.6 101.7 92 97.4 97 105.4 102.7 98.1 104.5 87.4 89.9 109.8 111.7 98.6 96.9 95.1 97 112.7 102.9 97.4 111.4 87.4 96.8 114.1 110.3 103.9 101.6 94.6 95.9 104.7 102.8 98.1 113.9 80.9 95.7 113.2 105.9 108.8 102.3 99 100.7 115.5 100.7 109.9 114.6 85.4 100.5 114.8 116.5 112.9 102 106 105.3 118.8 106.1 109.3 117.2 92.5 104.2 112.5 122.4 113.3 100 110.7 112.8 109.8 117.3 109.1 115.9 96 99.8 116.8 115.7 99.4 94.3
Seasonal period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Seasonal window
(?)
Seasonal degree
(?)
0
0
1
Trend window
(?)
Trend degree
(?)
1
1
0
Low-pass window
(?)
Low-pass degree
(?)
1
1
0
Robust loess fitting
FALSE
FALSE
TRUE
Chart options
Title:
R Code
par1 <- as.numeric(par1) #seasonal period if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window par3 <- as.numeric(par3) #s.degree if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window par5 <- as.numeric(par5)#t.degree if (par6 != '') par6 <- as.numeric(par6)#l.window par7 <- as.numeric(par7)#l.degree if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust nx <- length(x) x <- ts(x,frequency=par1) if (par6 != '') { m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8) } else { m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8) } m$time.series m$win m$deg m$jump m$inner m$outer bitmap(file='test1.png') plot(m,main=main) dev.off() mylagmax <- nx/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend') acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Component',header=TRUE) a<-table.element(a,'Window',header=TRUE) a<-table.element(a,'Degree',header=TRUE) a<-table.element(a,'Jump',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,m$win['s']) a<-table.element(a,m$deg['s']) a<-table.element(a,m$jump['s']) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,m$win['t']) a<-table.element(a,m$deg['t']) a<-table.element(a,m$jump['t']) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Low-pass',header=TRUE) a<-table.element(a,m$win['l']) a<-table.element(a,m$deg['l']) a<-table.element(a,m$jump['l']) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Fitted',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,'Remainder',header=TRUE) a<-table.row.end(a) for (i in 1:nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,x[i]+m$time.series[i,'remainder']) a<-table.element(a,m$time.series[i,'seasonal']) a<-table.element(a,m$time.series[i,'trend']) a<-table.element(a,m$time.series[i,'remainder']) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation