Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
1686 1591 2304 1712 1471 1377 1966 2453 1984 2596 4087 5179 1530 1523 1633 1976 1170 1480 1781 2472 1981 2273 3857 4551 1510 1329 1518 1790 1537 1449 1954 1897 1706 2514 3593 4524 1609 1638 2030 1375 1320 1245 1600 2298 2191 2511 3440 4923 1609 1435 2061 1789 1567 1404 1597 3159 1759 2504 4273 5274 1771 1682 1846 1589 1896 1379 1645 2512 1771 3727 4388 5434 1606 1523 1577 1605 1765 1403 2584 3318 1562 2349 3987 5891 1389 1442 1548 1935 1518 1250 1847 1930 2638 3114 4405 7242 1853 1779 2108 2336 1728 1661 2230 1645 2421 3740 4988 6757 1757 1394 1982 1650 1654 1406 1971 1968 2608 3845 4514 6694 1720 1321 1859 1628 1615 1457 1899 1605 2424 3116 4286 6047 1902 2049 1874 1279 1432 1540 2214 1857 2408 3252 3627 6153 1577 1667 1993 1997 1783 1625 2076 1773 2377 3088 4096 6119 1494 1564 1898 2121 1831 1515 2048 2795 1749 3339 4227 6410 1197 1968 1720 1725 1674 1693 2031 1495 2968 3385 3729 5999 1070 1402 1897 1862 1670 1688 2031
Sample Range:
(leave blank to include all observations)
From:
To:
Number of time lags
48
Default
5
6
7
8
9
10
11
12
24
36
48
60
Box-Cox transformation parameter (Lambda)
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
1
0
1
2
Degree of seasonal differencing (D)
0
0
1
2
Seasonality
12
12
1
2
3
4
6
12
CI type
White Noise
MA
Confidence Interval
Use logarithms with this base
(overrules the Box-Cox lambda parameter)
(?)
Chart options
R Code
if (par1 == 'Default') { par1 = 10*log10(length(x)) } else { par1 <- as.numeric(par1) } par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) par5 <- as.numeric(par5) if (par2 == 0) { x <- log(x) } else { x <- (x ^ par2 - 1) / par2 } if (par3 > 0) x <- diff(x,lag=1,difference=par3) if (par4 > 0) x <- diff(x,lag=par5,difference=par4) bitmap(file='pic1.png') racf <- acf(x,par1,main='Autocorrelation',xlab='lags',ylab='ACF') dev.off() bitmap(file='pic2.png') rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF') dev.off() (myacf <- c(racf$acf)) (mypacf <- c(rpacf$acf)) lengthx <- length(x) sqrtn <- sqrt(lengthx) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 2:(par1+1)) { a<-table.row.start(a) a<-table.element(a,i-1,header=TRUE) a<-table.element(a,round(myacf[i],6)) mytstat <- myacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Partial Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 1:par1) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,round(mypacf[i],6)) mytstat <- mypacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation