Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
170.47 122.04 145.60 138.95 144.90 162.50 107.52 129.35 161.84 152.35 132.43 110.96 129.46 137.26 116.56 115.63 107.86 104.77 145.32 139.09 117.68 116.75 117.75 152.59 129.69 121.32 135.32 141.33 148.91 180.11 199.00 169.50 164.71 206.76 196.00 200.22 206.39 289.46 287.85 288.38 308.17 265.71 173.05 131.45 121.58 109.11 106.56 88.07 95.83 78.45 67.43 66.17 73.04 72.20 84.21 126.16 146.33 190.57 209.16 674.50
Sample Range:
(leave blank to include all observations)
From:
To:
Chart options
R Code
x <-sort(x[!is.na(x)]) q1 <- function(data,n,p,i,f) { np <- n*p; i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q2 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q3 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- data[i+1] } } q4 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- (data[i]+data[i+1])/2 } else { qvalue <- data[i+1] } } q5 <- function(data,n,p,i,f) { np <- (n-1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i+1] } else { qvalue <- data[i+1] + f*(data[i+2]-data[i+1]) } } q6 <- function(data,n,p,i,f) { np <- n*p+0.5 i <<- floor(np) f <<- np - i qvalue <- data[i] } q7 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- f*data[i] + (1-f)*data[i+1] } } q8 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { if (f == 0.5) { qvalue <- (data[i]+data[i+1])/2 } else { if (f < 0.5) { qvalue <- data[i] } else { qvalue <- data[i+1] } } } } lx <- length(x) qval <- array(NA,dim=c(99,8)) mystep <- 25 mystart <- 25 if (lx>10){ mystep=10 mystart=10 } if (lx>20){ mystep=5 mystart=5 } if (lx>50){ mystep=2 mystart=2 } if (lx>=100){ mystep=1 mystart=1 } for (perc in seq(mystart,99,mystep)) { qval[perc,1] <- q1(x,lx,perc/100,i,f) qval[perc,2] <- q2(x,lx,perc/100,i,f) qval[perc,3] <- q3(x,lx,perc/100,i,f) qval[perc,4] <- q4(x,lx,perc/100,i,f) qval[perc,5] <- q5(x,lx,perc/100,i,f) qval[perc,6] <- q6(x,lx,perc/100,i,f) qval[perc,7] <- q7(x,lx,perc/100,i,f) qval[perc,8] <- q8(x,lx,perc/100,i,f) } bitmap(file='test1.png') myqqnorm <- qqnorm(x,col=2) qqline(x) grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Percentiles - Ungrouped Data',9,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p',1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_1.htm', 'Weighted Average at Xnp',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),1,TRUE) a<-table.row.end(a) for (perc in seq(mystart,99,mystep)) { a<-table.row.start(a) a<-table.element(a,round(perc/100,2),1,TRUE) for (j in 1:8) { a<-table.element(a,round(qval[perc,j],6)) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation