Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
73 72 71 69 89 88 73 63 64 64 65 67 69 71 70 72 88 83 76 70 75 71 75 81 87 90 80 85 105 104 98 94 107 112 121 118 120 122 109 112 132 127 116 113 123 125 137 127 123 128 114 120 143 135 119 117 132 139 158 141 139 150 142 149 166 150 139 140 158 169 186 177 175 187 176 185 204 188 171 171 182 185 200 192 185 195 190 195 213 194 171 171 186 182 193 185 172 185 179 182 193 173 155 164 188 186 200 185 173 190 190 193 195 178 163 165 188 182 200 177
Type of Seasonality
additive
additive
multiplicative
Seasonal Period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
par2 <- as.numeric(par2) x <- ts(x,freq=par2) m <- decompose(x,type=par1) m$figure bitmap(file='test1.png') plot(m) dev.off() mylagmax <- length(x)/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend') acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend') spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal') spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend') cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal') cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observations',header=TRUE) a<-table.element(a,'Fit',header=TRUE) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Random',header=TRUE) a<-table.row.end(a) for (i in 1:length(m$trend)) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) if (par1 == 'additive') a<-table.element(a,m$trend[i]+m$seasonal[i]) else a<-table.element(a,m$trend[i]*m$seasonal[i]) a<-table.element(a,m$trend[i]) a<-table.element(a,m$seasonal[i]) a<-table.element(a,m$random[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation