Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
464 675 703 887 1139 1077 1318 1260 1120 963 996 960 530 883 894 1045 1199 1287 1565 1577 1076 918 1008 1063 544 635 804 980 1018 1064 1404 1286 1104 999 996 1015 615 722 832 977 1270 1437 1520 1708 1151 934 1159 1209 699 830 996 1124 1458 1270 1753 2258 1208 1241 1265 1828 809 997 1164 1205 1538 1513 1378 2083 1357 1536 1526 1376 779 1005 1193 1522 1539 1546 2116 2326 1596 1356 1553 1613 814 1150 1225 1691 1759 1754 2100 2062 2012 1897 1964 2186 966 1549 1538 1612 2078 2137 2907 2249 1883 1739 1828 1868 1138 1430 1809 1763 2200 2067 2503 2141 2103 1972 2181 2344 970 1199 1718 1683 2025 2051 2439 2353 2230 1852 2147 2286 1007 1665 1642 1518 1831 2207 2822 2393 2306 1785 2047 2171 1212 1335 2011 1860 1954 2152 2835 2224 2182 1992 2389 2724 891 1247 2017 2257 2255 2255 3057 3330 1896 2096 2374 2535 1041 1728 2201 2455 2204 2660 3670 2665 2639 2226 2586 2684 1185 1749 2459 2618 2585 3310 3923
Seasonal period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Type of Exponential Smoothing
(?)
Triple
Single
Double
Triple
Type of seasonality
(?)
multiplicative
additive
multiplicative
Number of Forecasts
12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Chart options
R Code
par1 <- as.numeric(par1) if (par2 == 'Single') K <- 1 if (par2 == 'Double') K <- 2 if (par2 == 'Triple') K <- par1 nx <- length(x) nxmK <- nx - K x <- ts(x, frequency = par1) if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F) if (par2 == 'Double') fit <- HoltWinters(x, gamma=F) if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3) fit myresid <- x - fit$fitted[,'xhat'] bitmap(file='test1.png') op <- par(mfrow=c(2,1)) plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing') plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors') par(op) dev.off() bitmap(file='test2.png') p <- predict(fit, par1, prediction.interval=TRUE) np <- length(p[,1]) plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing') dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF') spectrum(myresid,main='Residals Periodogram') cpgram(myresid,main='Residal Cumulative Periodogram') qqnorm(myresid,main='Residual Normal QQ Plot') qqline(myresid) par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'alpha',header=TRUE) a<-table.element(a,fit$alpha) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'beta',header=TRUE) a<-table.element(a,fit$beta) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'gamma',header=TRUE) a<-table.element(a,fit$gamma) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Fitted',header=TRUE) a<-table.element(a,'Residuals',header=TRUE) a<-table.row.end(a) for (i in 1:nxmK) { a<-table.row.start(a) a<-table.element(a,i+K,header=TRUE) a<-table.element(a,x[i+K]) a<-table.element(a,fit$fitted[i,'xhat']) a<-table.element(a,myresid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Forecast',header=TRUE) a<-table.element(a,'95% Lower Bound',header=TRUE) a<-table.element(a,'95% Upper Bound',header=TRUE) a<-table.row.end(a) for (i in 1:np) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,p[i,'fit']) a<-table.element(a,p[i,'lwr']) a<-table.element(a,p[i,'upr']) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation