Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
26.663 23.598 26.931 24.740 25.806 24.364 24.477 23.901 23.175 23.227 21.672 21.870 21.439 21.089 23.709 21.669 21.752 20.761 23.479 23.824 23.105 23.110 21.759 22.073 21.937 20.035 23.590 21.672 22.222 22.123 23.950 23.504 22.238 23.142 21.059 21.573 21.548 20.000 22.424 20.615 21.761 22.874 24.104 23.748 23.262 22.907 21.519 22.025 22.604 20.894 24.677 23.673 25.320 23.583 24.671 24.454 24.122 24.252 22.084 22.991 23.287 23.049 25.076 24.037 24.430 24.667 26.451 25.618 25.014 25.110 22.964 23.981 23.798 22.270 24.775 22.646 23.988 24.737 26.276 25.816 25.210 25.199 23.162 24.707 24.364 22.644 25.565 24.062 25.431 24.635 27.009 26.606 26.268 26.462 25.246 25.180 24.657 23.304 26.982 26.199 27.210 26.122 26.706 26.878 26.152 26.379 24.712 25.688 24.990 24.239 26.721 23.475 24.767 26.219 28.361 28.599 27.914 27.784 25.693 26.881 26.217 24.218 27.914 26.975 28.527 27.139 28.982 28.169 28.056 29.136 26.291 26.987 26.589 24.848 27.543 26.896 28.878 27.390 28.065 28.141 29.048 28.484 26.634 27.735 27.132 24.924 28.963 26.589 27.931 28.009 29.229 28.759 28.405 27.945 25.912 26.619 26.076 25.286 27.660 25.951 26.398 25.565 28.865 30.000 29.261 29.012 26.992 27.897
Seasonal period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Type of Exponential Smoothing
(?)
Double
Single
Double
Triple
Type of seasonality
(?)
multiplicative
additive
multiplicative
Number of Forecasts
12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Chart options
R Code
par1 <- as.numeric(par1) if (par2 == 'Single') K <- 1 if (par2 == 'Double') K <- 2 if (par2 == 'Triple') K <- par1 nx <- length(x) nxmK <- nx - K x <- ts(x, frequency = par1) if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F) if (par2 == 'Double') fit <- HoltWinters(x, gamma=F) if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3) fit myresid <- x - fit$fitted[,'xhat'] bitmap(file='test1.png') op <- par(mfrow=c(2,1)) plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing') plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors') par(op) dev.off() bitmap(file='test2.png') p <- predict(fit, par1, prediction.interval=TRUE) np <- length(p[,1]) plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing') dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF') spectrum(myresid,main='Residals Periodogram') cpgram(myresid,main='Residal Cumulative Periodogram') qqnorm(myresid,main='Residual Normal QQ Plot') qqline(myresid) par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'alpha',header=TRUE) a<-table.element(a,fit$alpha) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'beta',header=TRUE) a<-table.element(a,fit$beta) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'gamma',header=TRUE) a<-table.element(a,fit$gamma) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Fitted',header=TRUE) a<-table.element(a,'Residuals',header=TRUE) a<-table.row.end(a) for (i in 1:nxmK) { a<-table.row.start(a) a<-table.element(a,i+K,header=TRUE) a<-table.element(a,x[i+K]) a<-table.element(a,fit$fitted[i,'xhat']) a<-table.element(a,myresid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Forecast',header=TRUE) a<-table.element(a,'95% Lower Bound',header=TRUE) a<-table.element(a,'95% Upper Bound',header=TRUE) a<-table.row.end(a) for (i in 1:np) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,p[i,'fit']) a<-table.element(a,p[i,'lwr']) a<-table.element(a,p[i,'upr']) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation