Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
38 32 35 33 37 29 31 36 35 38 31 34 35 38 37 33 32 38 38 32 33 31 38 39 32 32 35 37 33 33 28 32 31 37 30 33 31 33 31 33 32 33 32 33 28 35 39 34 38 32 38 30 33 38 32 32 34 34 36 34 28 34 35 35 31 37 35 27 40 37 36 38 39 41 27 30 37 31 31 27 36 38 37 33 34 31 39 34 32 33 36 32 41 28 30 36 35 31 34 36 36 35 37 28 39 32 35 39 35 42 34 33 41 33 34 32 40 40 35 36 37 27 39 38 31 33 32 39 36 33 33 32 37 30 38 29 22 35 35 34 35 34 34 35 23 31 27 36 31 32 39 37 38 39 34 31 32 37 36 32 35 36
# simulations
blockwidth of bootstrap
Significant digits
Quantiles
P1 P5 Q1 Q3 P95 P99
P0.5 P2.5 Q1 Q3 P97.5 P99.5
P10 P20 Q1 Q3 P80 P90
bandwidth
Chart options
R Code
par1 <- as.numeric(par1) par2 <- as.numeric(par2) if (par1 < 10) par1 = 10 if (par1 > 5000) par1 = 5000 if (par2 < 3) par2 = 3 if (par2 > length(x)) par2 = length(x) library(lattice) library(boot) boot.stat <- function(s) { s.mean <- mean(s) s.median <- median(s) c(s.mean, s.median) } (r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed')) z <- data.frame(cbind(r$t[,1],r$t[,2])) colnames(z) <- list('mean','median') bitmap(file='plot7.png') b <- boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency') grid() dev.off() b load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'statistic',header=TRUE) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,'Estimate',header=TRUE) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'IQR',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) q1 <- quantile(r$t[,1],0.25)[[1]] q3 <- quantile(r$t[,1],0.75)[[1]] a<-table.element(a,q1) a<-table.element(a,r$t0[1]) a<-table.element(a,q3) a<-table.element(a,sqrt(var(r$t[,1]))) a<-table.element(a,q3-q1) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) q1 <- quantile(r$t[,2],0.25)[[1]] q3 <- quantile(r$t[,2],0.75)[[1]] a<-table.element(a,q1) a<-table.element(a,r$t0[2]) a<-table.element(a,q3) a<-table.element(a,sqrt(var(r$t[,2]))) a<-table.element(a,q3-q1) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'95% Confidence Intervals',3,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'',1,TRUE) a<-table.element(a,'Mean',1,TRUE) a<-table.element(a,'Median',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Lower Bound',1,TRUE) a<-table.element(a,b$conf[1,1]) a<-table.element(a,b$conf[1,2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Upper Bound',1,TRUE) a<-table.element(a,b$conf[2,1]) a<-table.element(a,b$conf[2,2]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation