Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
13328 12873 14000 13477 14237 13674 13529 14058 12975 14326 14008 16193 14483 14011 15057 14884 15414 14440 14900 15074 14442 15307 14938 17193 15528 14765 15838 15723 16150 15486 15986 15983 15692 16490 15686 18897 16316 15636 17163 16534 16518 16375 16290 16352 15943 16362 16393 19051 16747 16320 17910 16961 17480 17049 16879 17473 16998 17307 17418 20169 17871 17226 19062 17804 19100 18522 18060 18869 18127 18871 18890 21263 19547 18450 20254 19240 20216 19420 19415 20018 18652 19978 19509 21971
Chart options
R Code
library(Hmisc) m <- mean(x) e <- median(x) bitmap(file='test1.png') op <- par(mfrow=c(2,1)) mydensity1 <- density(x,kernel='gaussian',na.rm=TRUE) plot(mydensity1,main='Density Plot - Gaussian Kernel',xlab='Median (0 -> full line) | Mean (0 -> dashed line)',ylab='density') abline(v=e,lty=1) abline(v=m,lty=5) grid() myseq <- seq(0.01, 0.99, 0.01) hd <- hdquantile(x, probs = myseq, se = TRUE, na.rm = FALSE, names = TRUE, weights=FALSE) plot(myseq,hd,col=2,main='Harrell-Davis Quantiles',xlab='quantiles',ylab='Median (0 -> full) | Mean (0 -> dashed)') abline(h=m,lty=5) abline(h=e,lty=1) grid() par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Median versus Mean',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) a<-table.element(a,mean(x)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) a<-table.element(a,median(x)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation