Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
1220 1250 1350 1380 1310 1350 1360 1230 1330 1330 1380 1340 1220 1230 1400 1320 1320 1380 1340 1220 1310 1280 1330 1350 1240 1260 1340 1270 1330 1440 1350 1220 1310 1350 1300 1410 1260 1210 1410 1240 1360 1420 1310 1360 1260 1410 1330 1400 1240 1280 1460 1250 1340 1440 1170 1420 1250 1390 1260 1390 1290 1310 1540 1250 1320 1430 1080 1370 1290 1380 1260 1400 1250 1290 1550 1200 1320 1500 1060 1220 1260 1270 1280 1350 1320 1350 1530 1150 1270 1460 1000 1290 1330 1180 1350 1300 1350 1350 1540 1180 1280 1520 960 1420 1370 1210 1320 1260
Chart options
R Code
library(Hmisc) m <- mean(x) e <- median(x) bitmap(file='test1.png') op <- par(mfrow=c(2,1)) mydensity1 <- density(x,kernel='gaussian',na.rm=TRUE) plot(mydensity1,main='Density Plot - Gaussian Kernel',xlab='Median (0 -> full line) | Mean (0 -> dashed line)',ylab='density') abline(v=e,lty=1) abline(v=m,lty=5) grid() myseq <- seq(0.01, 0.99, 0.01) hd <- hdquantile(x, probs = myseq, se = TRUE, na.rm = FALSE, names = TRUE, weights=FALSE) plot(myseq,hd,col=2,main='Harrell-Davis Quantiles',xlab='quantiles',ylab='Median (0 -> full) | Mean (0 -> dashed)') abline(h=m,lty=5) abline(h=e,lty=1) grid() par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Median versus Mean',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) a<-table.element(a,mean(x)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) a<-table.element(a,median(x)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation