Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
213008 120982 176537 184969 128552 52746 385534 33170 149061 165446 255558 180915 138816 279314 185362 330754 242201 248074 137731 217015 238060 352819 153935 132943 176297 174415 227308 223632 128603 238315 220067 171645 269655 84853 319589 215641 331650 167548 114673 275650 275861 155363 155774 128649 129301 368166 78800 183167 289575 154368 168809 24188 329267 65029 101097 223355 256087 248342 269536 214872 324427 254411 184360 214011 196553 178886 143250 189237 187681 120478 182192 73566 194979 167488 147958 289924 251351 185082 138570 152450 123905 364565 145790 201714 80953 122774 130585 298851 255899 148553 211322 187632 149018 220959 247964 162765 200476 232138 290838 315389 233269 232317 151811 43287 157799 168180 220195 252225 99466 100750 230772 262070 22938 152474 61857 132487 317394 21054 209641 31414 249237 184528 140189 112178 38214 158671 287703 172558 340803 253210 352257 158015 85439 236202 366492 84925 331866 131069 211775 170863 157949 314332 202656 173260 268676 112739 200511 228606 1 14688 98 455 0 0 184207 293412 0 203 7199 46660 17547 95227 969 156828
Sample Range:
(leave blank to include all observations)
From:
To:
Chart options
R Code
x <-sort(x[!is.na(x)]) q1 <- function(data,n,p,i,f) { np <- n*p; i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q2 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q3 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- data[i+1] } } q4 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- (data[i]+data[i+1])/2 } else { qvalue <- data[i+1] } } q5 <- function(data,n,p,i,f) { np <- (n-1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i+1] } else { qvalue <- data[i+1] + f*(data[i+2]-data[i+1]) } } q6 <- function(data,n,p,i,f) { np <- n*p+0.5 i <<- floor(np) f <<- np - i qvalue <- data[i] } q7 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- f*data[i] + (1-f)*data[i+1] } } q8 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { if (f == 0.5) { qvalue <- (data[i]+data[i+1])/2 } else { if (f < 0.5) { qvalue <- data[i] } else { qvalue <- data[i+1] } } } } lx <- length(x) qval <- array(NA,dim=c(99,8)) mystep <- 25 mystart <- 25 if (lx>10){ mystep=10 mystart=10 } if (lx>20){ mystep=5 mystart=5 } if (lx>50){ mystep=2 mystart=2 } if (lx>=100){ mystep=1 mystart=1 } for (perc in seq(mystart,99,mystep)) { qval[perc,1] <- q1(x,lx,perc/100,i,f) qval[perc,2] <- q2(x,lx,perc/100,i,f) qval[perc,3] <- q3(x,lx,perc/100,i,f) qval[perc,4] <- q4(x,lx,perc/100,i,f) qval[perc,5] <- q5(x,lx,perc/100,i,f) qval[perc,6] <- q6(x,lx,perc/100,i,f) qval[perc,7] <- q7(x,lx,perc/100,i,f) qval[perc,8] <- q8(x,lx,perc/100,i,f) } bitmap(file='test1.png') myqqnorm <- qqnorm(x,col=2) qqline(x) grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Percentiles - Ungrouped Data',9,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p',1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_1.htm', 'Weighted Average at Xnp',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),1,TRUE) a<-table.row.end(a) for (perc in seq(mystart,99,mystep)) { a<-table.row.start(a) a<-table.element(a,round(perc/100,2),1,TRUE) for (j in 1:8) { a<-table.element(a,round(qval[perc,j],6)) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation