Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
1418 56 79 30 146283 1 210907 869 56 58 28 98364 1 120982 1530 54 60 38 86146 1 176508 2172 89 108 30 96933 1 179321 901 40 49 22 79234 1 123185 463 25 0 26 42551 1 52746 3201 92 121 25 195663 1 385534 371 18 1 18 6853 1 33170 1192 63 20 11 21529 0 101645 1583 44 43 26 95757 1 149061 1439 33 69 25 85584 1 165446 1764 84 78 38 143983 1 237213 1495 88 86 44 75851 1 173326 1373 55 44 30 59238 1 133131 2187 60 104 40 93163 1 258873 1491 66 63 34 96037 1 180083 4041 154 158 47 151511 1 324799 1706 53 102 30 136368 1 230964 2152 119 77 31 112642 1 236785 1036 41 82 23 94728 1 135473 1882 61 115 36 105499 1 202925 1929 58 101 36 121527 1 215147 2242 75 80 30 127766 1 344297 1220 33 50 25 98958 1 153935 1289 40 83 39 77900 1 132943 2515 92 123 34 85646 1 174724 2147 100 73 31 98579 1 174415 2352 112 81 31 130767 1 225548 1638 73 105 33 131741 1 223632 1222 40 47 25 53907 1 124817 1812 45 105 33 178812 1 221698 1677 60 94 35 146761 1 210767 1579 62 44 42 82036 1 170266 1731 75 114 43 163253 1 260561 807 31 38 30 27032 1 84853 2452 77 107 33 171975 1 294424 829 34 30 13 65990 0 101011 1940 46 71 32 86572 1 215641 2662 99 84 36 159676 1 325107 186 17 0 0 1929 0 7176 1499 66 59 28 85371 1 167542 865 30 33 14 58391 1 106408 1793 76 42 17 31580 0 96560 2527 146 96 32 136815 1 265769 2747 67 106 30 120642 1 269651 1324 56 56 35 69107 1 149112 2702 107 57 20 50495 0 175824 1383 58 59 28 108016 1 152871 1179 34 39 28 46341 1 111665 2099 61 34 39 78348 1 116408 4308 119 76 34 79336 1 362301 918 42 20 26 56968 1 78800 1831 66 91 39 93176 1 183167 3373 89 115 39 161632 1 277965 1713 44 85 33 87850 1 150629 1438 66 76 28 127969 1 168809 496 24 8 4 15049 1 24188 2253 259 79 39 155135 1 329267 744 17 21 18 25109 1 65029 1161 64 30 14 45824 1 101097 2352 41 76 29 102996 1 218946 2144 68 101 44 160604 1 244052 4691 168 94 21 158051 0 341570 1112 43 27 16 44547 0 103597 2694 132 92 28 162647 1 233328 1973 105 123 35 174141 1 256462 1769 71 75 28 60622 1 206161 3148 112 128 38 179566 1 311473 2474 94 105 23 184301 1 235800 2084 82 55 36 75661 1 177939 1954 70 56 32 96144 1 207176 1226 57 41 29 129847 1 196553 1389 53 72 25 117286 1 174184 1496 103 67 27 71180 1 143246 2269 121 75 36 109377 1 187559 1833 62 114 28 85298 1 187681 1268 52 118 23 73631 1 119016 1943 52 77 40 86767 1 182192 893 32 22 23 23824 1 73566 1762 62 66 40 93487 1 194979 1403 45 69 28 82981 1 167488 1425 46 105 34 73815 1 143756 1857 63 116 33 94552 1 275541 1840 75 88 28 132190 1 243199 1502 88 73 34 128754 1 182999 1441 46 99 30 66363 1 135649 1420 53 62 33 67808 1 152299 1416 37 53 22 61724 1 120221 2970 90 118 38 131722 1 346485 1317 63 30 26 68580 1 145790 1644 78 100 35 106175 1 193339 870 25 49 8 55792 1 80953 1654 45 24 24 25157 1 122774 1054 46 67 29 76669 1 130585 937 41 46 20 57283 0 112611 3004 144 57 29 105805 1 286468 2008 82 75 45 129484 1 241066 2547 91 135 37 72413 1 148446 1885 71 68 33 87831 1 204713 1626 63 124 33 96971 1 182079 1468 53 33 25 71299 1 140344 2445 62 98 32 77494 1 220516 1964 63 58 29 120336 1 243060 1381 32 68 28 93913 1 162765 1369 39 81 28 136048 1 182613 1659 62 131 31 181248 1 232138 2888 117 110 52 146123 1 265318 1290 34 37 21 32036 0 85574 2845 92 130 24 186646 1 310839 1982 93 93 41 102255 1 225060 1904 54 118 33 168237 1 232317 1391 144 39 32 64219 1 144966 602 14 13 19 19630 1 43287 1743 61 74 20 76825 1 155754 1559 109 81 31 115338 1 164709 2014 38 109 31 109427 1 201940 2143 73 151 32 118168 1 235454 2146 75 51 18 84845 0 220801 874 50 28 23 153197 1 99466 1590 61 40 17 29877 0 92661 1590 55 56 20 63506 0 133328 1210 77 27 12 22445 0 61361 2072 75 37 17 47695 0 125930 1281 72 83 30 68370 1 100750 1401 50 54 31 146304 1 224549 834 32 27 10 38233 0 82316 1105 53 28 13 42071 0 102010 1272 42 59 22 50517 0 101523 1944 71 133 42 103950 1 243511 391 10 12 1 5841 1 22938 761 35 0 9 2341 0 41566 1605 65 106 32 84396 1 152474 530 25 23 11 24610 1 61857 1988 66 44 25 35753 0 99923 1386 41 71 36 55515 1 132487 2395 86 116 31 209056 1 317394 387 16 4 0 6622 1 21054 1742 42 62 24 115814 1 209641 620 19 12 13 11609 0 22648 449 19 18 8 13155 1 31414 800 45 14 13 18274 0 46698 1684 65 60 19 72875 0 131698 1050 35 7 18 10112 0 91735 2699 95 98 33 142775 1 244749 1606 49 64 40 68847 1 184510 1502 37 29 22 17659 0 79863 1204 64 32 38 20112 1 128423 1138 38 25 24 61023 1 97839 568 34 16 8 13983 1 38214 1459 32 48 35 65176 1 151101 2158 65 100 43 132432 1 272458 1111 52 46 43 112494 1 172494 1421 62 45 14 45109 0 108043 2833 65 129 41 170875 1 328107 1955 83 130 38 180759 1 250579 2922 95 136 45 214921 1 351067 1002 29 59 31 100226 1 158015 1060 18 25 13 32043 0 98866 956 33 32 28 54454 1 85439 2186 247 63 31 78876 1 229242 3604 139 95 40 170745 1 351619 1035 29 14 30 6940 1 84207 1417 118 36 16 49025 0 120445 3261 110 113 37 122037 1 324598 1587 67 47 30 53782 1 131069 1424 42 92 35 127748 1 204271 1701 65 70 32 86839 1 165543 1249 94 19 27 44830 1 141722 946 64 50 20 77395 0 116048 1926 81 41 18 89324 0 250047 3352 95 91 31 103300 1 299775 1641 67 111 31 112283 1 195838 2035 63 41 21 10901 1 173260 2312 83 120 39 120691 1 254488 1369 45 135 41 58106 1 104389 1577 30 27 13 57140 0 136084 2201 70 87 32 122422 1 199476 961 32 25 18 25899 0 92499 1900 83 131 39 139296 1 224330 1254 31 45 14 52678 0 135781 1335 67 29 7 23853 0 74408 1597 66 58 17 17306 0 81240 207 10 4 0 7953 1 14688 1645 70 47 30 89455 1 181633 2429 103 109 37 147866 1 271856 151 5 7 0 4245 1 7199 474 20 12 5 21509 1 46660 141 5 0 1 7670 1 17547 1639 36 37 16 66675 0 133368 872 34 37 32 14336 1 95227 1318 48 46 24 53608 1 152601 1018 40 15 17 30059 0 98146 1383 43 42 11 29668 0 79619 1314 31 7 24 22097 0 59194 1335 42 54 22 96841 0 139942 1403 46 54 12 41907 0 118612 910 33 14 19 27080 0 72880 616 18 16 13 35885 0 65475 1407 55 33 17 41247 0 99643 771 35 32 15 28313 0 71965 766 59 21 16 36845 0 77272 473 19 15 24 16548 0 49289 1376 66 38 15 36134 0 135131 1232 60 22 17 55764 0 108446 1521 36 28 18 28910 0 89746 572 25 10 20 13339 0 44296 1059 47 31 16 25319 0 77648 1544 54 32 16 66956 0 181528 1230 53 32 18 47487 0 134019 1206 40 43 22 52785 0 124064 1205 40 27 8 44683 0 92630 1255 39 37 17 35619 0 121848 613 14 20 18 21920 0 52915 721 45 32 16 45608 0 81872 1109 36 0 23 7721 0 58981 740 28 5 22 20634 0 53515 1126 44 26 13 29788 0 60812 728 30 10 13 31931 0 56375 689 22 27 16 37754 0 65490 592 17 11 16 32505 0 80949 995 31 29 20 40557 0 76302 1613 55 25 22 94238 0 104011 2048 54 55 17 44197 0 98104 705 21 23 18 43228 0 67989 301 14 5 17 4103 0 30989 1803 81 43 12 44144 0 135458 799 35 23 7 32868 0 73504 861 43 34 17 27640 0 63123 1186 46 36 14 14063 0 61254 1451 30 35 23 28990 0 74914 628 23 0 17 4694 0 31774 1161 38 37 14 42648 0 81437 1463 54 28 15 64329 0 87186 742 20 16 17 21928 0 50090 979 53 26 21 25836 0 65745 675 45 38 18 22779 0 56653 1241 39 23 18 40820 0 158399 676 20 22 17 27530 0 46455 1049 24 30 17 32378 0 73624 620 31 16 16 10824 0 38395 1081 35 18 15 39613 0 91899 1688 151 28 21 60865 0 139526 736 52 32 16 19787 0 52164 617 30 21 14 20107 0 51567 812 31 23 15 36605 0 70551 1051 29 29 17 40961 0 84856 1656 57 50 15 48231 0 102538 705 40 12 15 39725 0 86678 945 44 21 10 21455 0 85709 554 25 18 6 23430 0 34662 1597 77 27 22 62991 0 150580 982 35 41 21 49363 0 99611 222 11 13 1 9604 0 19349 1212 63 12 18 24552 0 99373 1143 44 21 17 31493 0 86230 435 19 8 4 3439 0 30837 532 13 26 10 19555 0 31706 882 42 27 16 21228 0 89806 608 38 13 16 23177 0 62088 459 29 16 9 22094 0 40151 578 20 2 16 2342 0 27634 826 27 42 17 38798 0 76990 509 20 5 7 3255 0 37460 717 19 37 15 24261 0 54157 637 37 17 14 18511 0 49862 857 26 38 14 40798 0 84337 830 42 37 18 28893 0 64175 652 49 29 12 21425 0 59382 707 30 32 16 50276 0 119308 954 49 35 21 37643 0 76702 1461 67 17 19 30377 0 103425 672 28 20 16 27126 0 70344 778 19 7 1 13 0 43410 1141 49 46 16 42097 0 104838 680 27 24 10 24451 0 62215 1090 30 40 19 14335 0 69304 616 22 3 12 5084 0 53117 285 12 10 2 9927 0 19764 1145 31 37 14 43527 0 86680 733 20 17 17 27184 0 84105 888 20 28 19 21610 0 77945 849 39 19 14 20484 0 89113 1182 29 29 11 20156 0 91005 528 16 8 4 6012 0 40248 642 27 10 16 18475 0 64187 947 21 15 20 12645 0 50857 819 19 15 12 11017 0 56613 757 35 28 15 37623 0 62792 894 14 17 16 35873 0 72535
Names of X columns:
Pageviews Logins Blogs Reviews Compendium_Hours Pop Tijd_RFC
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series
(?)
Fixed Seasonal Effects
Do not include Seasonal Dummies
Do not include Seasonal Dummies
Include Seasonal Dummies
Type of Equation
No Linear Trend
No Linear Trend
Linear Trend
First Differences
Seasonal Differences (s)
First and Seasonal Differences (s)
Degree of Predetermination (lagged endogenous variables)
Degree of Seasonal Predetermination
Seasonality
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
library(lattice) library(lmtest) n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test par1 <- as.numeric(par1) x <- t(y) k <- length(x[1,]) n <- length(x[,1]) x1 <- cbind(x[,par1], x[,1:k!=par1]) mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) colnames(x1) <- mycolnames #colnames(x)[par1] x <- x1 if (par3 == 'First Differences'){ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) for (i in 1:n-1) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 } if (par2 == 'Include Monthly Dummies'){ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) for (i in 1:11){ x2[seq(i,n,12),i] <- 1 } x <- cbind(x, x2) } if (par2 == 'Include Quarterly Dummies'){ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) for (i in 1:3){ x2[seq(i,n,4),i] <- 1 } x <- cbind(x, x2) } k <- length(x[1,]) if (par3 == 'Linear Trend'){ x <- cbind(x, c(1:n)) colnames(x)[k+1] <- 't' } x k <- length(x[1,]) df <- as.data.frame(x) (mylm <- lm(df)) (mysum <- summary(mylm)) if (n > n25) { kp3 <- k + 3 nmkm3 <- n - k - 3 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) numgqtests <- 0 numsignificant1 <- 0 numsignificant5 <- 0 numsignificant10 <- 0 for (mypoint in kp3:nmkm3) { j <- 0 numgqtests <- numgqtests + 1 for (myalt in c('greater', 'two.sided', 'less')) { j <- j + 1 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value } if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 } gqarr } bitmap(file='test0.png') plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') points(x[,1]-mysum$resid) grid() dev.off() bitmap(file='test1.png') plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') grid() dev.off() bitmap(file='test2.png') hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') grid() dev.off() bitmap(file='test3.png') densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test4.png') qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') qqline(mysum$resid) grid() dev.off() (myerror <- as.ts(mysum$resid)) bitmap(file='test5.png') dum <- cbind(lag(myerror,k=1),myerror) dum dum1 <- dum[2:length(myerror),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') lines(lowess(z)) abline(lm(z)) grid() dev.off() bitmap(file='test6.png') acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') grid() dev.off() bitmap(file='test7.png') pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') grid() dev.off() bitmap(file='test8.png') opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(mylm, las = 1, sub='Residual Diagnostics') par(opar) dev.off() if (n > n25) { bitmap(file='test9.png') plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') grid() dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) a<-table.row.end(a) myeq <- colnames(x)[1] myeq <- paste(myeq, '[t] = ', sep='') for (i in 1:k){ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') if (rownames(mysum$coefficients)[i] != '(Intercept)') { myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') } } myeq <- paste(myeq, ' + e[t]') a<-table.row.start(a) a<-table.element(a, myeq) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Variable',header=TRUE) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE) a<-table.element(a,'2-tail p-value',header=TRUE) a<-table.element(a,'1-tail p-value',header=TRUE) a<-table.row.end(a) for (i in 1:k){ a<-table.row.start(a) a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) a<-table.element(a,mysum$coefficients[i,1]) a<-table.element(a, round(mysum$coefficients[i,2],6)) a<-table.element(a, round(mysum$coefficients[i,3],4)) a<-table.element(a, round(mysum$coefficients[i,4],6)) a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R',1,TRUE) a<-table.element(a, sqrt(mysum$r.squared)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'R-squared',1,TRUE) a<-table.element(a, mysum$r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-squared',1,TRUE) a<-table.element(a, mysum$adj.r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (value)',1,TRUE) a<-table.element(a, mysum$fstatistic[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) a<-table.element(a, mysum$fstatistic[2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) a<-table.element(a, mysum$fstatistic[3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'p-value',1,TRUE) a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Standard Deviation',1,TRUE) a<-table.element(a, mysum$sigma) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Sum Squared Residuals',1,TRUE) a<-table.element(a, sum(myerror*myerror)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Time or Index', 1, TRUE) a<-table.element(a, 'Actuals', 1, TRUE) a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE) a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,i, 1, TRUE) a<-table.element(a,x[i]) a<-table.element(a,x[i]-mysum$resid[i]) a<-table.element(a,mysum$resid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab') if (n > n25) { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-values',header=TRUE) a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'breakpoint index',header=TRUE) a<-table.element(a,'greater',header=TRUE) a<-table.element(a,'2-sided',header=TRUE) a<-table.element(a,'less',header=TRUE) a<-table.row.end(a) for (mypoint in kp3:nmkm3) { a<-table.row.start(a) a<-table.element(a,mypoint,header=TRUE) a<-table.element(a,gqarr[mypoint-kp3+1,1]) a<-table.element(a,gqarr[mypoint-kp3+1,2]) a<-table.element(a,gqarr[mypoint-kp3+1,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable5.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Description',header=TRUE) a<-table.element(a,'# significant tests',header=TRUE) a<-table.element(a,'% significant tests',header=TRUE) a<-table.element(a,'OK/NOK',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'1% type I error level',header=TRUE) a<-table.element(a,numsignificant1) a<-table.element(a,numsignificant1/numgqtests) if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'5% type I error level',header=TRUE) a<-table.element(a,numsignificant5) a<-table.element(a,numsignificant5/numgqtests) if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'10% type I error level',header=TRUE) a<-table.element(a,numsignificant10) a<-table.element(a,numsignificant10/numgqtests) if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable6.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation