Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
33907 71433 152 74272 99 765 35981 53655 99 78867 128 1371 36588 70556 92 80176 57 1880 16967 74702 138 36541 95 232 25333 61201 106 55107 205 230 21027 686 95 45527 51 828 21114 87586 145 46001 59 1833 28777 6615 181 62854 194 906 35612 89725 190 78112 27 1781 24183 40420 150 52653 9 1264 22262 49569 186 48467 24 1123 20637 13963 174 44873 189 1461 29948 62508 151 65605 37 820 22093 90901 112 48016 81 107 36997 89418 143 81110 72 1349 31089 83237 120 68019 81 870 19477 22183 169 42198 90 1471 31301 24346 135 68531 216 731 18497 74341 161 40071 216 1945 30142 24188 98 65849 13 521 21326 11781 142 46362 153 1920 16779 23072 190 36313 185 1924 38068 49119 169 83521 131 100 29707 67776 130 64932 136 34 35016 86910 160 76730 182 325 26131 69358 176 56982 139 1677 29251 16144 111 63793 42 1779 22855 77863 165 49740 213 477 31806 89070 117 69447 184 1007 34124 34790 122 74708 44 1527
Names of X columns:
Omzet Promotieuitgaven Prijs Gemiddeld_budget Consumentenvertrouwen Uitgaven_lokale_promotie
Type of Correlation
kendall
pearson
spearman
kendall
Chart options
Title:
R Code
panel.tau <- function(x, y, digits=2, prefix='', cex.cor) { usr <- par('usr'); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) rr <- cor.test(x, y, method=par1) r <- round(rr$p.value,2) txt <- format(c(r, 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep='') if(missing(cex.cor)) cex <- 0.5/strwidth(txt) text(0.5, 0.5, txt, cex = cex) } panel.hist <- function(x, ...) { usr <- par('usr'); on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...) } bitmap(file='test1.png') pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main) dev.off() load(file='createtable') n <- length(y[,1]) n a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ',header=TRUE) for (i in 1:n) { a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE) } a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE) for (j in 1:n) { r <- cor.test(y[i,],y[j,],method=par1) a<-table.element(a,round(r$estimate,3)) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'pair',1,TRUE) a<-table.element(a,'Pearson r',1,TRUE) a<-table.element(a,'Spearman rho',1,TRUE) a<-table.element(a,'Kendall tau',1,TRUE) a<-table.row.end(a) cor.test(y[1,],y[2,],method=par1) for (i in 1:(n-1)) { for (j in (i+1):n) { a<-table.row.start(a) dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='') a<-table.element(a,dum,header=TRUE) rp <- cor.test(y[i,],y[j,],method='pearson') a<-table.element(a,round(rp$estimate,4)) rs <- cor.test(y[i,],y[j,],method='spearman') a<-table.element(a,round(rs$estimate,4)) rk <- cor.test(y[i,],y[j,],method='kendall') a<-table.element(a,round(rk$estimate,4)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=T) a<-table.element(a,paste('(',round(rp$p.value,4),')',sep='')) a<-table.element(a,paste('(',round(rs$p.value,4),')',sep='')) a<-table.element(a,paste('(',round(rk$p.value,4),')',sep='')) a<-table.row.end(a) } } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation