Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
194.9 1.79 195.5 1.95 196 2.26 196.2 2.04 196.2 2.16 196.2 2.75 196.2 2.79 197 2.88 197.7 3.36 198 2.97 198.2 3.1 198.5 2.49 198.6 2.2 199.5 2.25 200 2.09 201.3 2.79 202.2 3.14 202.9 2.93 203.5 2.65 203.5 2.67 204 2.26 204.1 2.35 204.3 2.13 204.5 2.18 204.8 2.9 205.1 2.63 205.7 2.67 206.5 1.81 206.9 1.33 207.1 0.88 207.8 1.28 208 1.26 208.5 1.26 208.6 1.29 209 1.1 209.1 1.37 209.7 1.21 209.8 1.74 209.9 1.76 210 1.48 210.8 1.04 211.4 1.62 211.7 1.49 212 1.79 212.2 1.8 212.4 1.58 212.9 1.86 213.4 1.74 213.7 1.59 214 1.26 214.3 1.13 214.8 1.92 215 2.61 215.9 2.26 216.4 2.41 216.9 2.26 217.2 2.03 217.5 2.86 217.9 2.55 218.1 2.27 218.6 2.26 218.9 2.57 219.3 3.07 220.4 2.76 220.9 2.51 221 2.87 221.8 3.14 222 3.11 222.2 3.16 222.5 2.47 222.9 2.57 223.1 2.89
Names of X columns:
Uurloon Inflatie
Type of Correlation
pearson
pearson
spearman
kendall
Chart options
Title:
R Code
panel.tau <- function(x, y, digits=2, prefix='', cex.cor) { usr <- par('usr'); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) rr <- cor.test(x, y, method=par1) r <- round(rr$p.value,2) txt <- format(c(r, 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep='') if(missing(cex.cor)) cex <- 0.5/strwidth(txt) text(0.5, 0.5, txt, cex = cex) } panel.hist <- function(x, ...) { usr <- par('usr'); on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...) } bitmap(file='test1.png') pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main) dev.off() load(file='createtable') n <- length(y[,1]) n a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ',header=TRUE) for (i in 1:n) { a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE) } a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE) for (j in 1:n) { r <- cor.test(y[i,],y[j,],method=par1) a<-table.element(a,round(r$estimate,3)) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'pair',1,TRUE) a<-table.element(a,'Pearson r',1,TRUE) a<-table.element(a,'Spearman rho',1,TRUE) a<-table.element(a,'Kendall tau',1,TRUE) a<-table.row.end(a) cor.test(y[1,],y[2,],method=par1) for (i in 1:(n-1)) { for (j in (i+1):n) { a<-table.row.start(a) dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='') a<-table.element(a,dum,header=TRUE) rp <- cor.test(y[i,],y[j,],method='pearson') a<-table.element(a,round(rp$estimate,4)) rs <- cor.test(y[i,],y[j,],method='spearman') a<-table.element(a,round(rs$estimate,4)) rk <- cor.test(y[i,],y[j,],method='kendall') a<-table.element(a,round(rk$estimate,4)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=T) a<-table.element(a,paste('(',round(rp$p.value,4),')',sep='')) a<-table.element(a,paste('(',round(rs$p.value,4),')',sep='')) a<-table.element(a,paste('(',round(rk$p.value,4),')',sep='')) a<-table.row.end(a) } } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation