Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
210907 56 115 112285 145 120982 56 109 84786 101 176508 54 146 83123 98 179321 89 116 101193 132 123185 40 68 38361 60 52746 25 101 68504 38 385534 92 96 119182 144 33170 18 67 22807 5 101645 63 44 17140 28 149061 44 100 116174 84 165446 33 93 57635 79 237213 84 140 66198 127 173326 88 166 71701 78 133131 55 99 57793 60 258873 60 139 80444 131 180083 66 130 53855 84 324799 154 181 97668 133 230964 53 116 133824 150 236785 119 116 101481 91 135473 41 88 99645 132 202925 61 139 114789 136 215147 58 135 99052 124 344297 75 108 67654 118 153935 33 89 65553 70 132943 40 156 97500 107 174724 92 129 69112 119 174415 100 118 82753 89 225548 112 118 85323 112 223632 73 125 72654 108 124817 40 95 30727 52 221698 45 126 77873 112 210767 60 135 117478 116 170266 62 154 74007 123 260561 75 165 90183 125 84853 31 113 61542 27 294424 77 127 101494 162 101011 34 52 27570 32 215641 46 121 55813 64 325107 99 136 79215 92 7176 17 0 1423 0 167542 66 108 55461 83 106408 30 46 31081 41 96560 76 54 22996 47 265769 146 124 83122 120 269651 67 115 70106 105 149112 56 128 60578 79 175824 107 80 39992 65 152871 58 97 79892 70 111665 34 104 49810 55 116408 61 59 71570 39 362301 119 125 100708 67 78800 42 82 33032 21 183167 66 149 82875 127 277965 89 149 139077 152 150629 44 122 71595 113 168809 66 118 72260 99 24188 24 12 5950 7 329267 259 144 115762 141 65029 17 67 32551 21 101097 64 52 31701 35 218946 41 108 80670 109 244052 68 166 143558 133 341570 168 80 117105 123 103597 43 60 23789 26 233328 132 107 120733 230 256462 105 127 105195 166 206161 71 107 73107 68 311473 112 146 132068 147 235800 94 84 149193 179 177939 82 141 46821 61 207176 70 123 87011 101 196553 57 111 95260 108 174184 53 98 55183 90 143246 103 105 106671 114 187559 121 135 73511 103 187681 62 107 92945 142 119016 52 85 78664 79 182192 52 155 70054 88 73566 32 88 22618 25 194979 62 155 74011 83 167488 45 104 83737 113 143756 46 132 69094 118 275541 63 127 93133 110 243199 75 108 95536 129 182999 88 129 225920 51 135649 46 116 62133 93 152299 53 122 61370 76 120221 37 85 43836 49 346485 90 147 106117 118 145790 63 99 38692 38 193339 78 87 84651 141 80953 25 28 56622 58 122774 45 90 15986 27 130585 46 109 95364 91 112611 41 78 26706 48 286468 144 111 89691 63 241066 82 158 67267 56 148446 91 141 126846 144 204713 71 122 41140 73 182079 63 124 102860 168 140344 53 93 51715 64 220516 62 124 55801 97 243060 63 112 111813 117 162765 32 108 120293 100 182613 39 99 138599 149 232138 62 117 161647 187 265318 117 199 115929 127 85574 34 78 24266 37 310839 92 91 162901 245 225060 93 158 109825 87 232317 54 126 129838 177 144966 144 122 37510 49 43287 14 71 43750 49 155754 61 75 40652 73 164709 109 115 87771 177 201940 38 119 85872 94 235454 73 124 89275 117 220801 75 72 44418 60 99466 50 91 192565 55 92661 61 45 35232 39 133328 55 78 40909 64 61361 77 39 13294 26 125930 75 68 32387 64 100750 72 119 140867 58 224549 50 117 120662 95 82316 32 39 21233 25 102010 53 50 44332 26 101523 42 88 61056 76 243511 71 155 101338 129 22938 10 0 1168 11 41566 35 36 13497 2 152474 65 123 65567 101 61857 25 32 25162 28 99923 66 99 32334 36 132487 41 136 40735 89 317394 86 117 91413 193 21054 16 0 855 4 209641 42 88 97068 84 22648 19 39 44339 23 31414 19 25 14116 39 46698 45 52 10288 14 131698 65 75 65622 78 91735 35 71 16563 14 244749 95 124 76643 101 184510 49 151 110681 82 79863 37 71 29011 24 128423 64 145 92696 36 97839 38 87 94785 75 38214 34 27 8773 16 151101 32 131 83209 55 272458 65 162 93815 131 172494 52 165 86687 131 108043 62 54 34553 39 328107 65 159 105547 144 250579 83 147 103487 139 351067 95 170 213688 211 158015 29 119 71220 78 98866 18 49 23517 50 85439 33 104 56926 39 229242 247 120 91721 90 351619 139 150 115168 166 84207 29 112 111194 12 120445 118 59 51009 57 324598 110 136 135777 133 131069 67 107 51513 69 204271 42 130 74163 119 165543 65 115 51633 119 141722 94 107 75345 65 116048 64 75 33416 61 250047 81 71 83305 49 299775 95 120 98952 101 195838 67 116 102372 196 173260 63 79 37238 15 254488 83 150 103772 136 104389 45 156 123969 89 136084 30 51 27142 40 199476 70 118 135400 123 92499 32 71 21399 21 224330 83 144 130115 163 135781 31 47 24874 29 74408 67 28 34988 35 81240 66 68 45549 13 14688 10 0 6023 5 181633 70 110 64466 96 271856 103 147 54990 151 7199 5 0 1644 6 46660 20 15 6179 13 17547 5 4 3926 3 133368 36 64 32755 56 95227 34 111 34777 23 152601 48 85 73224 57 98146 40 68 27114 14 79619 43 40 20760 43 59194 31 80 37636 20 139942 42 88 65461 72 118612 46 48 30080 87 72880 33 76 24094 21 65475 18 51 69008 56 99643 55 67 54968 59 71965 35 59 46090 82 77272 59 61 27507 43 49289 19 76 10672 25 135131 66 60 34029 38 108446 60 68 46300 25 89746 36 71 24760 38 44296 25 76 18779 12 77648 47 62 21280 29 181528 54 61 40662 47 134019 53 67 28987 45 124064 40 88 22827 40 92630 40 30 18513 30 121848 39 64 30594 41 52915 14 68 24006 25 81872 45 64 27913 23 58981 36 91 42744 14 53515 28 88 12934 16 60812 44 52 22574 26 56375 30 49 41385 21 65490 22 62 18653 27 80949 17 61 18472 9 76302 31 76 30976 33 104011 55 88 63339 42 98104 54 66 25568 68 67989 21 71 33747 32 30989 14 68 4154 6 135458 81 48 19474 67 73504 35 25 35130 33 63123 43 68 39067 77 61254 46 41 13310 46 74914 30 90 65892 30 31774 23 66 4143 0 81437 38 54 28579 36 87186 54 59 51776 46 50090 20 60 21152 18 65745 53 77 38084 48 56653 45 68 27717 29 158399 39 72 32928 28 46455 20 67 11342 34 73624 24 64 19499 33 38395 31 63 16380 34 91899 35 59 36874 33 139526 151 84 48259 80 52164 52 64 16734 32 51567 30 56 28207 30 70551 31 54 30143 41 84856 29 67 41369 41 102538 57 58 45833 51 86678 40 59 29156 18 85709 44 40 35944 34 34662 25 22 36278 31 150580 77 83 45588 39 99611 35 81 45097 54 19349 11 2 3895 14 99373 63 72 28394 24 86230 44 61 18632 24 30837 19 15 2325 8 31706 13 32 25139 26 89806 42 62 27975 19 62088 38 58 14483 11 40151 29 36 13127 14 27634 20 59 5839 1 76990 27 68 24069 39 37460 20 21 3738 5 54157 19 55 18625 37 49862 37 54 36341 32 84337 26 55 24548 38 64175 42 72 21792 47 59382 49 41 26263 47 119308 30 61 23686 37 76702 49 67 49303 51 103425 67 76 25659 45 70344 28 64 28904 21 43410 19 3 2781 1 104838 49 63 29236 42 62215 27 40 19546 26 69304 30 69 22818 21 53117 22 48 32689 4 19764 12 8 5752 10 86680 31 52 22197 43 84105 20 66 20055 34 77945 20 76 25272 31 89113 39 43 82206 19 91005 29 39 32073 34 40248 16 14 5444 6 64187 27 61 20154 11 50857 21 71 36944 24 56613 19 44 8019 16 62792 35 60 30884 72 72535 14 64 19540 21
Names of X columns:
time_in_rfc logins feedback_messages_p1 totsize totblogs
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series
(?)
Fixed Seasonal Effects
Do not include Seasonal Dummies
Do not include Seasonal Dummies
Include Seasonal Dummies
Type of Equation
No Linear Trend
No Linear Trend
Linear Trend
First Differences
Seasonal Differences (s)
First and Seasonal Differences (s)
Degree of Predetermination (lagged endogenous variables)
Degree of Seasonal Predetermination
Seasonality
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
library(lattice) library(lmtest) n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test par1 <- as.numeric(par1) x <- t(y) k <- length(x[1,]) n <- length(x[,1]) x1 <- cbind(x[,par1], x[,1:k!=par1]) mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) colnames(x1) <- mycolnames #colnames(x)[par1] x <- x1 if (par3 == 'First Differences'){ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) for (i in 1:n-1) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 } if (par2 == 'Include Monthly Dummies'){ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) for (i in 1:11){ x2[seq(i,n,12),i] <- 1 } x <- cbind(x, x2) } if (par2 == 'Include Quarterly Dummies'){ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) for (i in 1:3){ x2[seq(i,n,4),i] <- 1 } x <- cbind(x, x2) } k <- length(x[1,]) if (par3 == 'Linear Trend'){ x <- cbind(x, c(1:n)) colnames(x)[k+1] <- 't' } x k <- length(x[1,]) df <- as.data.frame(x) (mylm <- lm(df)) (mysum <- summary(mylm)) if (n > n25) { kp3 <- k + 3 nmkm3 <- n - k - 3 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) numgqtests <- 0 numsignificant1 <- 0 numsignificant5 <- 0 numsignificant10 <- 0 for (mypoint in kp3:nmkm3) { j <- 0 numgqtests <- numgqtests + 1 for (myalt in c('greater', 'two.sided', 'less')) { j <- j + 1 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value } if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 } gqarr } bitmap(file='test0.png') plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') points(x[,1]-mysum$resid) grid() dev.off() bitmap(file='test1.png') plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') grid() dev.off() bitmap(file='test2.png') hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') grid() dev.off() bitmap(file='test3.png') densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test4.png') qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') qqline(mysum$resid) grid() dev.off() (myerror <- as.ts(mysum$resid)) bitmap(file='test5.png') dum <- cbind(lag(myerror,k=1),myerror) dum dum1 <- dum[2:length(myerror),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') lines(lowess(z)) abline(lm(z)) grid() dev.off() bitmap(file='test6.png') acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') grid() dev.off() bitmap(file='test7.png') pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') grid() dev.off() bitmap(file='test8.png') opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(mylm, las = 1, sub='Residual Diagnostics') par(opar) dev.off() if (n > n25) { bitmap(file='test9.png') plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') grid() dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) a<-table.row.end(a) myeq <- colnames(x)[1] myeq <- paste(myeq, '[t] = ', sep='') for (i in 1:k){ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') if (rownames(mysum$coefficients)[i] != '(Intercept)') { myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') } } myeq <- paste(myeq, ' + e[t]') a<-table.row.start(a) a<-table.element(a, myeq) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Variable',header=TRUE) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE) a<-table.element(a,'2-tail p-value',header=TRUE) a<-table.element(a,'1-tail p-value',header=TRUE) a<-table.row.end(a) for (i in 1:k){ a<-table.row.start(a) a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) a<-table.element(a,mysum$coefficients[i,1]) a<-table.element(a, round(mysum$coefficients[i,2],6)) a<-table.element(a, round(mysum$coefficients[i,3],4)) a<-table.element(a, round(mysum$coefficients[i,4],6)) a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R',1,TRUE) a<-table.element(a, sqrt(mysum$r.squared)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'R-squared',1,TRUE) a<-table.element(a, mysum$r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-squared',1,TRUE) a<-table.element(a, mysum$adj.r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (value)',1,TRUE) a<-table.element(a, mysum$fstatistic[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) a<-table.element(a, mysum$fstatistic[2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) a<-table.element(a, mysum$fstatistic[3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'p-value',1,TRUE) a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Standard Deviation',1,TRUE) a<-table.element(a, mysum$sigma) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Sum Squared Residuals',1,TRUE) a<-table.element(a, sum(myerror*myerror)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Time or Index', 1, TRUE) a<-table.element(a, 'Actuals', 1, TRUE) a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE) a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,i, 1, TRUE) a<-table.element(a,x[i]) a<-table.element(a,x[i]-mysum$resid[i]) a<-table.element(a,mysum$resid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab') if (n > n25) { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-values',header=TRUE) a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'breakpoint index',header=TRUE) a<-table.element(a,'greater',header=TRUE) a<-table.element(a,'2-sided',header=TRUE) a<-table.element(a,'less',header=TRUE) a<-table.row.end(a) for (mypoint in kp3:nmkm3) { a<-table.row.start(a) a<-table.element(a,mypoint,header=TRUE) a<-table.element(a,gqarr[mypoint-kp3+1,1]) a<-table.element(a,gqarr[mypoint-kp3+1,2]) a<-table.element(a,gqarr[mypoint-kp3+1,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable5.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Description',header=TRUE) a<-table.element(a,'# significant tests',header=TRUE) a<-table.element(a,'% significant tests',header=TRUE) a<-table.element(a,'OK/NOK',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'1% type I error level',header=TRUE) a<-table.element(a,numsignificant1) a<-table.element(a,numsignificant1/numgqtests) if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'5% type I error level',header=TRUE) a<-table.element(a,numsignificant5) a<-table.element(a,numsignificant5/numgqtests) if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'10% type I error level',header=TRUE) a<-table.element(a,numsignificant10) a<-table.element(a,numsignificant10/numgqtests) if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable6.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation