Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
1801 159261 91 586 111 0 74 1717 189672 59 520 76 1 80 192 7215 18 72 1 0 0 2295 129098 95 645 155 0 84 3450 230632 136 1163 125 0 124 6861 515038 263 1945 278 1 140 1795 180745 56 585 89 1 88 1681 185559 59 470 59 0 115 1897 154581 44 612 87 0 109 2974 298001 96 992 129 1 104 1946 121844 75 634 158 2 63 2148 184039 69 677 120 0 118 1832 100324 98 665 87 0 71 3183 220269 119 1079 264 4 112 1476 168265 58 413 51 4 63 1567 154647 88 469 85 3 86 1756 142018 57 431 96 0 132 1247 79030 61 361 72 5 54 2779 167047 87 877 147 0 134 726 27997 24 221 49 0 57 1048 73019 59 366 40 0 59 2805 241082 100 846 99 0 113 1760 195820 72 642 127 0 96 2266 142001 54 689 164 1 96 1848 145433 86 576 41 1 78 1665 183744 32 610 160 0 80 2084 202357 163 673 92 0 93 1440 199532 93 361 59 0 109 2741 354924 118 907 89 0 115 2112 192399 44 882 90 0 79 1684 182286 44 490 76 0 103 1616 181590 45 548 116 2 71 2227 133801 105 723 92 4 66 3088 233686 123 918 344 0 100 2389 219428 53 787 84 1 96 1 0 1 0 0 0 0 2099 223044 63 983 61 0 109 1669 100129 51 539 138 3 51 2137 145864 49 515 270 9 119 2153 249965 64 795 64 0 136 2390 242379 71 753 96 2 84 1701 145794 59 635 62 0 136 983 96404 32 361 35 2 84 2161 195891 78 804 59 1 92 1276 117156 50 394 56 2 103 1190 157787 95 320 40 2 82 745 81293 32 212 49 1 106 2330 237435 101 772 121 0 96 2289 233155 89 740 113 1 124 2639 160344 59 938 172 8 97 658 48188 28 205 37 0 82 1917 161922 69 492 51 0 79 2557 307432 74 818 89 0 97 2026 235223 79 680 73 0 107 1911 195583 59 691 49 1 126 1716 146061 56 534 74 8 40 1852 208834 67 487 58 0 96 981 93764 24 301 72 1 100 1177 151985 66 421 32 0 91 2833 193222 96 947 59 10 136 1688 148922 60 492 70 6 124 2097 132856 80 790 85 0 79 1331 129561 61 362 87 11 74 1244 112718 37 430 48 3 96 1256 160930 35 416 56 0 97 1294 99184 41 409 41 0 122 2303 192535 70 498 86 8 144 2897 138708 65 887 152 2 90 1103 114408 38 267 48 0 93 340 31970 15 101 40 0 78 2791 225558 112 1000 135 3 72 1338 139220 72 416 83 1 45 1441 113612 68 480 62 2 120 1623 108641 71 454 91 1 59 2650 162203 67 671 91 0 133 1499 100098 44 413 82 2 117 2302 174768 60 677 112 1 123 2540 158459 97 820 69 0 110 1000 80934 30 316 78 0 75 1234 84971 71 395 105 0 114 927 80545 68 217 49 0 94 2176 287191 64 818 60 0 116 957 62974 28 292 49 1 86 1551 134091 40 513 132 0 90 1014 75555 46 345 49 0 87 1771 162154 54 557 71 0 99 2613 226638 227 645 100 0 132 1205 115367 112 284 74 0 96 1337 108749 62 424 49 7 91 1524 155537 52 614 72 0 77 1829 153133 41 672 59 5 104 2229 165618 78 649 90 1 97 1233 151517 57 415 68 0 94 1365 133686 58 505 81 0 60 950 61342 40 387 33 0 46 2319 245196 117 730 166 0 135 1857 195576 70 563 94 0 90 223 19349 12 67 15 0 2 2390 225371 105 812 104 3 96 1985 153213 78 811 61 0 109 700 59117 29 281 11 0 15 1062 91762 24 338 45 0 68 1311 136769 54 413 84 0 88 1157 114798 61 298 66 1 84 823 85338 40 223 27 1 46 596 27676 22 194 59 0 59 1545 153535 48 371 127 0 116 1130 122417 37 268 48 0 29 0 0 0 0 0 0 0 1082 91529 32 332 58 0 91 1135 107205 67 371 57 0 76 1367 144664 45 465 59 0 83 1506 146445 63 447 76 1 84 870 76656 60 295 71 0 65 78 3616 5 14 5 0 0 0 0 0 0 0 0 0 1130 183088 44 388 70 0 84 1582 144677 84 564 76 0 114 2034 159104 98 562 122 2 124 919 113273 38 288 56 0 92 778 43410 19 292 63 0 3 1752 175774 73 530 92 1 109 957 95401 42 256 54 0 74 2098 134837 55 602 64 8 121 731 60493 40 174 29 3 48 285 19764 12 75 19 1 8 1834 164062 56 565 64 3 80 1148 132696 33 377 79 0 107 1646 155367 54 544 97 0 116 256 11796 9 79 22 0 8 98 10674 9 33 7 0 0 1404 142261 57 479 37 0 56 41 6836 3 11 5 0 4 1824 162563 63 626 48 6 70 42 5118 3 6 1 0 0 528 40248 16 183 34 1 14 0 0 0 0 0 0 0 1073 122641 47 334 49 0 91 1305 88837 38 269 44 0 89 81 7131 4 27 0 1 0 261 9056 14 99 18 0 12 934 76611 24 260 48 1 60 1180 132697 51 290 54 0 80 1147 100681 19 414 50 1 88
Names of X columns:
page_views time_spent_seconds number_logins number_course_compenium_views number_compendium_views number_compediums_shared number_feedbackmessage_PR
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series
(?)
Fixed Seasonal Effects
Do not include Seasonal Dummies
Do not include Seasonal Dummies
Include Seasonal Dummies
Type of Equation
No Linear Trend
No Linear Trend
Linear Trend
First Differences
Seasonal Differences (s)
First and Seasonal Differences (s)
Degree of Predetermination (lagged endogenous variables)
Degree of Seasonal Predetermination
Seasonality
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
library(lattice) library(lmtest) n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test par1 <- as.numeric(par1) x <- t(y) k <- length(x[1,]) n <- length(x[,1]) x1 <- cbind(x[,par1], x[,1:k!=par1]) mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) colnames(x1) <- mycolnames #colnames(x)[par1] x <- x1 if (par3 == 'First Differences'){ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) for (i in 1:n-1) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 } if (par2 == 'Include Monthly Dummies'){ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) for (i in 1:11){ x2[seq(i,n,12),i] <- 1 } x <- cbind(x, x2) } if (par2 == 'Include Quarterly Dummies'){ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) for (i in 1:3){ x2[seq(i,n,4),i] <- 1 } x <- cbind(x, x2) } k <- length(x[1,]) if (par3 == 'Linear Trend'){ x <- cbind(x, c(1:n)) colnames(x)[k+1] <- 't' } x k <- length(x[1,]) df <- as.data.frame(x) (mylm <- lm(df)) (mysum <- summary(mylm)) if (n > n25) { kp3 <- k + 3 nmkm3 <- n - k - 3 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) numgqtests <- 0 numsignificant1 <- 0 numsignificant5 <- 0 numsignificant10 <- 0 for (mypoint in kp3:nmkm3) { j <- 0 numgqtests <- numgqtests + 1 for (myalt in c('greater', 'two.sided', 'less')) { j <- j + 1 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value } if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 } gqarr } bitmap(file='test0.png') plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') points(x[,1]-mysum$resid) grid() dev.off() bitmap(file='test1.png') plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') grid() dev.off() bitmap(file='test2.png') hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') grid() dev.off() bitmap(file='test3.png') densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test4.png') qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') qqline(mysum$resid) grid() dev.off() (myerror <- as.ts(mysum$resid)) bitmap(file='test5.png') dum <- cbind(lag(myerror,k=1),myerror) dum dum1 <- dum[2:length(myerror),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') lines(lowess(z)) abline(lm(z)) grid() dev.off() bitmap(file='test6.png') acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') grid() dev.off() bitmap(file='test7.png') pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') grid() dev.off() bitmap(file='test8.png') opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(mylm, las = 1, sub='Residual Diagnostics') par(opar) dev.off() if (n > n25) { bitmap(file='test9.png') plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') grid() dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) a<-table.row.end(a) myeq <- colnames(x)[1] myeq <- paste(myeq, '[t] = ', sep='') for (i in 1:k){ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') if (rownames(mysum$coefficients)[i] != '(Intercept)') { myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') } } myeq <- paste(myeq, ' + e[t]') a<-table.row.start(a) a<-table.element(a, myeq) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Variable',header=TRUE) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE) a<-table.element(a,'2-tail p-value',header=TRUE) a<-table.element(a,'1-tail p-value',header=TRUE) a<-table.row.end(a) for (i in 1:k){ a<-table.row.start(a) a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) a<-table.element(a,mysum$coefficients[i,1]) a<-table.element(a, round(mysum$coefficients[i,2],6)) a<-table.element(a, round(mysum$coefficients[i,3],4)) a<-table.element(a, round(mysum$coefficients[i,4],6)) a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R',1,TRUE) a<-table.element(a, sqrt(mysum$r.squared)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'R-squared',1,TRUE) a<-table.element(a, mysum$r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-squared',1,TRUE) a<-table.element(a, mysum$adj.r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (value)',1,TRUE) a<-table.element(a, mysum$fstatistic[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) a<-table.element(a, mysum$fstatistic[2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) a<-table.element(a, mysum$fstatistic[3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'p-value',1,TRUE) a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Standard Deviation',1,TRUE) a<-table.element(a, mysum$sigma) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Sum Squared Residuals',1,TRUE) a<-table.element(a, sum(myerror*myerror)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Time or Index', 1, TRUE) a<-table.element(a, 'Actuals', 1, TRUE) a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE) a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,i, 1, TRUE) a<-table.element(a,x[i]) a<-table.element(a,x[i]-mysum$resid[i]) a<-table.element(a,mysum$resid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab') if (n > n25) { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-values',header=TRUE) a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'breakpoint index',header=TRUE) a<-table.element(a,'greater',header=TRUE) a<-table.element(a,'2-sided',header=TRUE) a<-table.element(a,'less',header=TRUE) a<-table.row.end(a) for (mypoint in kp3:nmkm3) { a<-table.row.start(a) a<-table.element(a,mypoint,header=TRUE) a<-table.element(a,gqarr[mypoint-kp3+1,1]) a<-table.element(a,gqarr[mypoint-kp3+1,2]) a<-table.element(a,gqarr[mypoint-kp3+1,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable5.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Description',header=TRUE) a<-table.element(a,'# significant tests',header=TRUE) a<-table.element(a,'% significant tests',header=TRUE) a<-table.element(a,'OK/NOK',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'1% type I error level',header=TRUE) a<-table.element(a,numsignificant1) a<-table.element(a,numsignificant1/numgqtests) if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'5% type I error level',header=TRUE) a<-table.element(a,numsignificant5) a<-table.element(a,numsignificant5/numgqtests) if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'10% type I error level',header=TRUE) a<-table.element(a,numsignificant10) a<-table.element(a,numsignificant10/numgqtests) if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable6.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation