Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
210907 56 81 30 112285 120982 56 55 28 84786 176508 54 50 38 83123 179321 89 125 30 101193 123185 40 40 22 38361 52746 25 37 26 68504 385534 92 63 25 119182 33170 18 44 18 22807 101645 63 88 11 17140 149061 44 66 26 116174 165446 33 57 25 57635 237213 84 74 38 66198 173326 88 49 44 71701 133131 55 52 30 57793 258873 60 88 40 80444 180083 66 36 34 53855 324799 154 108 47 97668 230964 53 43 30 133824 236785 119 75 31 101481 135473 41 32 23 99645 202925 61 44 36 114789 215147 58 85 36 99052 344297 75 86 30 67654 153935 33 56 25 65553 132943 40 50 39 97500 174724 92 135 34 69112 174415 100 63 31 82753 225548 112 81 31 85323 223632 73 52 33 72654 124817 40 44 25 30727 221698 45 113 33 77873 210767 60 39 35 117478 170266 62 73 42 74007 260561 75 48 43 90183 84853 31 33 30 61542 294424 77 59 33 101494 101011 34 41 13 27570 215641 46 69 32 55813 325107 99 64 36 79215 7176 17 1 0 1423 167542 66 59 28 55461 106408 30 32 14 31081 96560 76 129 17 22996 265769 146 37 32 83122 269651 67 31 30 70106 149112 56 65 35 60578 175824 107 107 20 39992 152871 58 74 28 79892 111665 34 54 28 49810 116408 61 76 39 71570 362301 119 715 34 100708 78800 42 57 26 33032 183167 66 66 39 82875 277965 89 106 39 139077 150629 44 54 33 71595 168809 66 32 28 72260 24188 24 20 4 5950 329267 259 71 39 115762 65029 17 21 18 32551 101097 64 70 14 31701 218946 41 112 29 80670 244052 68 66 44 143558 341570 168 190 21 117105 103597 43 66 16 23789 233328 132 165 28 120733 256462 105 56 35 105195 206161 71 61 28 73107 311473 112 53 38 132068 235800 94 127 23 149193 177939 82 63 36 46821 207176 70 38 32 87011 196553 57 50 29 95260 174184 53 52 25 55183 143246 103 42 27 106671 187559 121 76 36 73511 187681 62 67 28 92945 119016 52 50 23 78664 182192 52 53 40 70054 73566 32 39 23 22618 194979 62 50 40 74011 167488 45 77 28 83737 143756 46 57 34 69094 275541 63 73 33 93133 243199 75 34 28 95536 182999 88 39 34 225920 135649 46 46 30 62133 152299 53 63 33 61370 120221 37 35 22 43836 346485 90 106 38 106117 145790 63 43 26 38692 193339 78 47 35 84651 80953 25 31 8 56622 122774 45 162 24 15986 130585 46 57 29 95364 112611 41 36 20 26706 286468 144 263 29 89691 241066 82 78 45 67267 148446 91 63 37 126846 204713 71 54 33 41140 182079 63 63 33 102860 140344 53 77 25 51715 220516 62 79 32 55801 243060 63 110 29 111813 162765 32 56 28 120293 182613 39 56 28 138599 232138 62 43 31 161647 265318 117 111 52 115929 85574 34 71 21 24266 310839 92 62 24 162901 225060 93 56 41 109825 232317 54 74 33 129838 144966 144 60 32 37510 43287 14 43 19 43750 155754 61 68 20 40652 164709 109 53 31 87771 201940 38 87 31 85872 235454 73 46 32 89275 220801 75 105 18 44418 99466 50 32 23 192565 92661 61 133 17 35232 133328 55 79 20 40909 61361 77 51 12 13294 125930 75 207 17 32387 100750 72 67 30 140867 224549 50 47 31 120662 82316 32 34 10 21233 102010 53 66 13 44332 101523 42 76 22 61056 243511 71 65 42 101338 22938 10 9 1 1168 41566 35 42 9 13497 152474 65 45 32 65567 61857 25 25 11 25162 99923 66 115 25 32334 132487 41 97 36 40735 317394 86 53 31 91413 21054 16 2 0 855 209641 42 52 24 97068 22648 19 44 13 44339 31414 19 22 8 14116 46698 45 35 13 10288 131698 65 74 19 65622 91735 35 103 18 16563 244749 95 144 33 76643 184510 49 60 40 110681 79863 37 134 22 29011 128423 64 89 38 92696 97839 38 42 24 94785 38214 34 52 8 8773 151101 32 98 35 83209 272458 65 99 43 93815 172494 52 52 43 86687 108043 62 29 14 34553 328107 65 125 41 105547 250579 83 106 38 103487 351067 95 95 45 213688 158015 29 40 31 71220 98866 18 140 13 23517 85439 33 43 28 56926 229242 247 128 31 91721 351619 139 142 40 115168 84207 29 73 30 111194 120445 118 72 16 51009 324598 110 128 37 135777 131069 67 61 30 51513 204271 42 73 35 74163 165543 65 148 32 51633 141722 94 64 27 75345 116048 64 45 20 33416 250047 81 58 18 83305 299775 95 97 31 98952 195838 67 50 31 102372 173260 63 37 21 37238 254488 83 50 39 103772 104389 45 105 41 123969 136084 30 69 13 27142 199476 70 46 32 135400 92499 32 57 18 21399 224330 83 52 39 130115 135781 31 98 14 24874 74408 67 61 7 34988 81240 66 89 17 45549 14688 10 0 0 6023 181633 70 48 30 64466 271856 103 91 37 54990 7199 5 0 0 1644 46660 20 7 5 6179 17547 5 3 1 3926 133368 36 54 16 32755 95227 34 70 32 34777 152601 48 36 24 73224 98146 40 37 17 27114 79619 43 123 11 20760 59194 31 247 24 37636 139942 42 46 22 65461 118612 46 72 12 30080 72880 33 41 19 24094 65475 18 24 13 69008 99643 55 45 17 54968 71965 35 33 15 46090 77272 59 27 16 27507 49289 19 36 24 10672 135131 66 87 15 34029 108446 60 90 17 46300 89746 36 114 18 24760 44296 25 31 20 18779 77648 47 45 16 21280 181528 54 69 16 40662 134019 53 51 18 28987 124064 40 34 22 22827 92630 40 60 8 18513 121848 39 45 17 30594 52915 14 54 18 24006 81872 45 25 16 27913 58981 36 38 23 42744 53515 28 52 22 12934 60812 44 67 13 22574 56375 30 74 13 41385 65490 22 38 16 18653 80949 17 30 16 18472 76302 31 26 20 30976 104011 55 67 22 63339 98104 54 132 17 25568 67989 21 42 18 33747 30989 14 35 17 4154 135458 81 118 12 19474 73504 35 68 7 35130 63123 43 43 17 39067 61254 46 76 14 13310 74914 30 64 23 65892 31774 23 48 17 4143 81437 38 64 14 28579 87186 54 56 15 51776 50090 20 71 17 21152 65745 53 75 21 38084 56653 45 39 18 27717 158399 39 42 18 32928 46455 20 39 17 11342 73624 24 93 17 19499 38395 31 38 16 16380 91899 35 60 15 36874 139526 151 71 21 48259 52164 52 52 16 16734 51567 30 27 14 28207 70551 31 59 15 30143 84856 29 40 17 41369 102538 57 79 15 45833 86678 40 44 15 29156 85709 44 65 10 35944 34662 25 10 6 36278 150580 77 124 22 45588 99611 35 81 21 45097 19349 11 15 1 3895 99373 63 92 18 28394 86230 44 42 17 18632 30837 19 10 4 2325 31706 13 24 10 25139 89806 42 64 16 27975 62088 38 45 16 14483 40151 29 22 9 13127 27634 20 56 16 5839 76990 27 94 17 24069 37460 20 19 7 3738 54157 19 35 15 18625 49862 37 32 14 36341 84337 26 35 14 24548 64175 42 48 18 21792 59382 49 49 12 26263 119308 30 48 16 23686 76702 49 62 21 49303 103425 67 96 19 25659 70344 28 45 16 28904 43410 19 63 1 2781 104838 49 71 16 29236 62215 27 26 10 19546 69304 30 48 19 22818 53117 22 29 12 32689 19764 12 19 2 5752 86680 31 45 14 22197 84105 20 45 17 20055 77945 20 67 19 25272 89113 39 30 14 82206 91005 29 36 11 32073 40248 16 34 4 5444 64187 27 36 16 20154 50857 21 34 20 36944 56613 19 37 12 8019 62792 35 46 15 30884 72535 14 44 16 19540
Names of X columns:
time_in_rfc logins compendium_views_pr compendium_reviewed totsize
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series
(?)
Fixed Seasonal Effects
Do not include Seasonal Dummies
Do not include Seasonal Dummies
Include Seasonal Dummies
Type of Equation
No Linear Trend
No Linear Trend
Linear Trend
First Differences
Seasonal Differences (s)
First and Seasonal Differences (s)
Degree of Predetermination (lagged endogenous variables)
Degree of Seasonal Predetermination
Seasonality
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
library(lattice) library(lmtest) n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test par1 <- as.numeric(par1) x <- t(y) k <- length(x[1,]) n <- length(x[,1]) x1 <- cbind(x[,par1], x[,1:k!=par1]) mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) colnames(x1) <- mycolnames #colnames(x)[par1] x <- x1 if (par3 == 'First Differences'){ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) for (i in 1:n-1) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 } if (par2 == 'Include Monthly Dummies'){ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) for (i in 1:11){ x2[seq(i,n,12),i] <- 1 } x <- cbind(x, x2) } if (par2 == 'Include Quarterly Dummies'){ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) for (i in 1:3){ x2[seq(i,n,4),i] <- 1 } x <- cbind(x, x2) } k <- length(x[1,]) if (par3 == 'Linear Trend'){ x <- cbind(x, c(1:n)) colnames(x)[k+1] <- 't' } x k <- length(x[1,]) df <- as.data.frame(x) (mylm <- lm(df)) (mysum <- summary(mylm)) if (n > n25) { kp3 <- k + 3 nmkm3 <- n - k - 3 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) numgqtests <- 0 numsignificant1 <- 0 numsignificant5 <- 0 numsignificant10 <- 0 for (mypoint in kp3:nmkm3) { j <- 0 numgqtests <- numgqtests + 1 for (myalt in c('greater', 'two.sided', 'less')) { j <- j + 1 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value } if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 } gqarr } bitmap(file='test0.png') plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') points(x[,1]-mysum$resid) grid() dev.off() bitmap(file='test1.png') plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') grid() dev.off() bitmap(file='test2.png') hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') grid() dev.off() bitmap(file='test3.png') densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test4.png') qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') qqline(mysum$resid) grid() dev.off() (myerror <- as.ts(mysum$resid)) bitmap(file='test5.png') dum <- cbind(lag(myerror,k=1),myerror) dum dum1 <- dum[2:length(myerror),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') lines(lowess(z)) abline(lm(z)) grid() dev.off() bitmap(file='test6.png') acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') grid() dev.off() bitmap(file='test7.png') pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') grid() dev.off() bitmap(file='test8.png') opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(mylm, las = 1, sub='Residual Diagnostics') par(opar) dev.off() if (n > n25) { bitmap(file='test9.png') plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') grid() dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) a<-table.row.end(a) myeq <- colnames(x)[1] myeq <- paste(myeq, '[t] = ', sep='') for (i in 1:k){ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') if (rownames(mysum$coefficients)[i] != '(Intercept)') { myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') } } myeq <- paste(myeq, ' + e[t]') a<-table.row.start(a) a<-table.element(a, myeq) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Variable',header=TRUE) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE) a<-table.element(a,'2-tail p-value',header=TRUE) a<-table.element(a,'1-tail p-value',header=TRUE) a<-table.row.end(a) for (i in 1:k){ a<-table.row.start(a) a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) a<-table.element(a,mysum$coefficients[i,1]) a<-table.element(a, round(mysum$coefficients[i,2],6)) a<-table.element(a, round(mysum$coefficients[i,3],4)) a<-table.element(a, round(mysum$coefficients[i,4],6)) a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R',1,TRUE) a<-table.element(a, sqrt(mysum$r.squared)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'R-squared',1,TRUE) a<-table.element(a, mysum$r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-squared',1,TRUE) a<-table.element(a, mysum$adj.r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (value)',1,TRUE) a<-table.element(a, mysum$fstatistic[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) a<-table.element(a, mysum$fstatistic[2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) a<-table.element(a, mysum$fstatistic[3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'p-value',1,TRUE) a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Standard Deviation',1,TRUE) a<-table.element(a, mysum$sigma) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Sum Squared Residuals',1,TRUE) a<-table.element(a, sum(myerror*myerror)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Time or Index', 1, TRUE) a<-table.element(a, 'Actuals', 1, TRUE) a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE) a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,i, 1, TRUE) a<-table.element(a,x[i]) a<-table.element(a,x[i]-mysum$resid[i]) a<-table.element(a,mysum$resid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab') if (n > n25) { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-values',header=TRUE) a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'breakpoint index',header=TRUE) a<-table.element(a,'greater',header=TRUE) a<-table.element(a,'2-sided',header=TRUE) a<-table.element(a,'less',header=TRUE) a<-table.row.end(a) for (mypoint in kp3:nmkm3) { a<-table.row.start(a) a<-table.element(a,mypoint,header=TRUE) a<-table.element(a,gqarr[mypoint-kp3+1,1]) a<-table.element(a,gqarr[mypoint-kp3+1,2]) a<-table.element(a,gqarr[mypoint-kp3+1,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable5.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Description',header=TRUE) a<-table.element(a,'# significant tests',header=TRUE) a<-table.element(a,'% significant tests',header=TRUE) a<-table.element(a,'OK/NOK',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'1% type I error level',header=TRUE) a<-table.element(a,numsignificant1) a<-table.element(a,numsignificant1/numgqtests) if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'5% type I error level',header=TRUE) a<-table.element(a,numsignificant5) a<-table.element(a,numsignificant5/numgqtests) if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'10% type I error level',header=TRUE) a<-table.element(a,numsignificant10) a<-table.element(a,numsignificant10/numgqtests) if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable6.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation