Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
1818 279055 73 504 95 3 96 42 159 130 140824 32033 186099 165 165 1439 212450 76 513 68 4 75 38 149 143 110459 20654 113854 135 132 2059 233939 83 710 64 16 70 46 178 118 105079 16346 99776 121 121 2733 222117 106 1154 139 2 134 42 164 146 112098 35926 106194 148 145 1399 189911 56 415 51 1 83 30 100 73 43929 10621 100792 73 71 631 70849 28 179 46 3 8 35 129 89 76173 10024 47552 49 47 5460 605767 135 2563 118 0 173 40 156 146 187326 43068 250931 185 177 381 33186 19 111 46 0 1 18 67 22 22807 1271 6853 5 5 2150 227332 62 763 79 7 88 38 148 132 144408 34416 115466 125 124 2042 267925 49 661 76 0 104 37 132 92 66485 20318 110896 93 92 2541 372083 123 983 82 0 114 46 169 147 79089 24409 169351 154 149 2449 279589 133 754 66 7 132 60 230 203 81625 20648 94853 98 93 2100 212638 87 785 60 10 57 37 122 113 68788 12347 72591 70 70 3020 368577 85 1186 117 4 139 55 191 171 103297 21857 101345 148 148 2265 269455 88 724 50 10 87 44 162 87 69446 11034 113713 100 100 5169 402600 197 1783 133 0 176 63 237 208 114948 33433 165354 150 142 2375 335735 78 850 63 8 114 40 156 153 167949 35902 164263 197 194 3564 432711 173 1390 100 4 121 43 157 97 125081 22355 135213 114 113 1516 185822 59 527 44 3 103 32 123 95 125818 31219 111669 169 162 2398 267365 89 692 65 8 135 52 203 197 136588 21983 134163 200 186 2551 279452 74 849 103 0 123 49 187 160 112431 40085 140303 148 147 3253 527853 112 1443 103 1 110 41 152 148 103037 18507 150773 140 137 1761 227252 50 587 62 5 84 25 89 84 82317 16278 111848 74 71 1787 200004 58 636 70 9 103 57 227 227 118906 24662 102509 128 123 3796 257239 134 1371 159 1 158 45 165 154 83515 31452 96785 140 134 3113 271341 139 1094 78 0 116 42 162 151 104581 32580 116136 116 115 3230 324969 134 1201 101 5 114 45 174 142 103129 22883 158376 147 138 2494 349753 93 795 73 0 181 43 154 148 83243 27652 153990 132 125 1856 200723 63 674 58 0 76 36 129 110 37110 9845 64057 70 66 3257 399591 80 1230 147 0 155 45 174 149 113344 20190 230054 144 137 2692 327660 89 1111 54 3 143 50 195 179 139165 46201 184531 155 152 2187 269239 83 758 84 6 50 50 186 149 86652 10971 114198 165 159 2593 397689 107 911 56 1 145 51 197 187 112302 34811 198299 161 159 1293 130446 49 456 45 4 56 42 157 153 69652 3029 33750 31 31 3567 430118 104 1293 87 4 141 44 168 163 119442 38941 189723 199 185 2764 273950 56 1186 87 0 83 42 159 127 69867 4958 100826 78 78 3766 429837 129 1353 77 0 112 44 161 151 101629 32344 188355 121 117 2075 254312 93 695 72 2 79 40 153 100 70168 19433 104470 112 109 995 120351 35 306 36 1 33 17 55 46 31081 12558 58391 41 41 3750 395658 212 1319 51 2 152 43 166 156 103925 36524 164808 158 149 3437 349119 87 1582 44 10 126 41 151 128 92622 26041 134097 123 123 2071 220517 86 788 75 10 97 41 148 111 79011 16637 80238 104 103 2038 234780 85 768 87 5 84 40 129 119 93487 28395 133252 94 87 1841 191784 71 491 97 6 68 49 181 148 64520 16747 54518 73 71 2964 186112 94 1211 90 1 64 52 93 65 93473 9105 121850 52 51 5578 459665 158 2091 860 2 101 42 150 134 114360 11941 79367 71 70 918 78800 42 330 57 2 20 26 82 66 33032 7935 56968 21 21 2704 259887 87 770 99 1 107 59 229 201 96125 19499 106314 155 155 4145 368086 123 1410 120 10 150 50 193 177 151911 22938 191889 174 172 2841 230299 70 1187 76 3 129 50 176 156 89256 25314 104864 136 133 2222 256033 82 706 56 0 102 47 179 158 95676 28527 160792 128 125 496 24188 24 218 20 0 8 4 12 7 5950 2694 15049 7 7 2699 400109 334 865 94 8 88 51 181 175 149695 20867 191179 165 158 744 65029 17 255 21 5 21 18 67 61 32551 3597 25109 21 21 1161 101097 64 454 70 3 30 14 52 41 31701 5296 45824 35 35 3405 319020 68 1245 133 1 106 41 148 133 100087 32982 129711 137 133 2970 375638 91 790 86 5 166 61 230 228 169707 38975 210012 174 169 4002 375011 207 1233 224 6 132 40 148 140 150491 42721 194679 257 256 2919 387748 156 1118 65 0 161 44 160 155 120192 41455 197680 207 190 2399 280106 90 919 86 12 90 40 155 141 95893 23923 81180 103 100 4121 400971 153 1352 70 10 160 51 198 181 151715 26719 197765 171 171 3330 322780 124 1212 148 12 139 29 104 75 176225 53405 214738 279 267 3132 291391 124 1257 72 11 104 43 169 97 59900 12526 96252 83 80 2868 295075 93 1030 59 8 103 42 163 142 104767 26584 124527 130 126 1778 280018 81 669 67 3 66 41 151 136 114799 37062 153242 131 132 2109 267432 71 542 58 0 163 30 116 87 72128 25696 145707 126 121 2148 217181 141 652 60 6 93 39 153 140 143592 24634 113963 158 156 3009 258166 159 894 105 10 85 51 195 169 89626 27269 134904 138 133 2624 277891 90 935 84 2 159 40 149 129 131072 25270 114268 200 199 1781 192894 74 659 63 5 146 29 106 92 126817 24634 94333 104 98 2735 271853 75 917 67 13 122 47 179 160 81351 17828 102204 111 109 893 73566 32 385 39 6 22 23 88 67 22618 3007 23824 26 25 2411 276269 96 789 60 7 85 48 185 179 88977 20065 111563 115 113 2291 242619 64 949 94 2 105 38 133 90 92059 24648 91313 127 126 2235 230030 71 784 67 5 131 42 164 144 81897 21588 89770 140 137 2370 371391 91 1001 96 4 140 46 169 144 108146 25217 100125 121 121 3242 398698 107 1268 54 3 156 40 153 144 126372 30927 165278 183 178 2080 243355 114 616 54 6 89 45 166 134 249771 18487 181712 68 63 2537 233519 73 775 62 2 137 42 164 146 71154 18050 80906 112 109 2149 219936 74 746 71 0 102 41 146 121 71571 17696 75881 103 101 2150 206169 54 795 50 1 74 37 141 112 55918 17326 83963 63 61 4232 483429 133 1273 117 3 161 47 183 145 160141 39361 175721 166 157 1380 146100 72 657 45 5 30 26 99 99 38692 9648 68580 38 38 2449 295224 109 703 61 2 120 48 134 96 102812 26759 136323 163 159 870 80953 25 437 31 0 49 8 28 27 56622 7905 55792 59 58 2700 217384 63 1060 175 0 121 27 101 77 15986 4527 25157 27 27 1574 179344 62 459 70 6 76 38 139 137 123534 41517 100922 108 108 4055 416097 223 1591 284 1 85 41 159 151 108535 21261 118845 88 83 3327 395041 131 1102 95 4 152 61 222 126 93879 36099 170492 92 88 3098 180679 106 1051 72 1 165 45 171 159 144551 39039 81716 170 164 2673 311447 105 850 63 1 89 41 154 101 56750 13841 115750 98 96 2404 292260 84 732 75 3 168 42 154 144 127654 23841 105590 205 192 1932 199481 68 632 90 10 48 35 129 102 65594 8589 92795 96 94 3147 282361 78 1128 89 1 149 36 140 135 59938 15049 82390 107 107 2598 329281 89 971 138 4 75 40 156 147 146975 39038 135599 150 144 2108 234577 48 711 68 5 107 40 156 155 165904 36774 127667 138 136 2240 310685 68 750 80 7 121 38 138 138 169265 40076 163073 177 171 2506 352078 91 904 65 0 184 43 153 113 183500 43840 211381 213 210 4198 416463 163 1369 130 12 155 65 251 248 165986 43146 189944 208 193 4165 429565 120 1538 85 13 165 33 126 116 184923 50099 226168 307 297 2842 297080 142 893 83 9 121 51 198 176 140358 40312 117495 125 125 2562 331792 71 926 89 0 176 45 168 140 149959 32616 195894 208 204 2564 242507 205 833 116 0 92 36 138 59 57224 11338 80684 73 70 602 43287 14 214 43 4 13 19 71 64 43750 7409 19630 49 49 2579 238089 87 833 87 4 120 25 90 40 48029 18213 88634 82 82 2665 285479 164 931 80 0 124 44 167 98 104978 45873 139292 206 205 3004 310383 63 1304 132 0 133 45 172 139 100046 39844 128602 112 111 2786 321797 95 1079 59 0 169 44 162 135 101047 28317 135848 139 135 1477 193926 96 490 50 0 39 35 129 97 197426 24797 178377 60 59 3358 175737 106 992 87 0 126 46 179 142 160902 7471 106330 70 70 2107 354041 78 677 62 5 82 44 163 155 147172 27259 178303 112 108 2338 303566 92 698 70 1 148 45 164 115 109432 23201 116938 142 141 400 23668 13 156 9 0 12 1 0 0 1168 238 5841 11 11 2233 196743 79 785 54 0 146 40 155 103 83248 28830 106020 130 130 530 61857 25 192 25 4 23 11 32 30 25162 3913 24610 31 28 2033 217543 54 641 113 0 87 51 189 130 45724 9935 74151 132 101 3246 440711 128 1251 63 1 164 38 140 102 110529 27738 232241 219 216 387 21054 16 146 2 0 4 0 0 0 855 338 6622 4 4 2137 252805 52 866 67 5 81 30 111 77 101382 13326 127097 102 97 492 31961 22 200 22 0 18 8 25 9 14116 3988 13155 39 39 3838 360436 125 1351 157 3 118 43 159 150 89506 24347 160501 125 119 2193 251948 77 740 79 7 76 48 183 163 135356 27111 91502 121 118 1796 187320 97 524 113 14 55 49 184 148 116066 3938 24469 42 41 1907 180842 58 724 50 3 62 32 119 94 144244 17416 88229 111 107 568 38214 34 276 52 0 16 8 27 21 8773 1888 13983 16 16 2647 289296 58 869 113 3 98 43 163 151 102153 18700 80716 70 69 2819 358276 84 1031 115 0 137 52 198 187 117440 36809 157384 162 160 1464 211775 67 511 78 0 50 53 205 171 104128 24959 122975 173 158 3946 447335 90 1716 135 4 152 49 191 170 134238 37343 191469 171 161 2554 348017 99 884 120 0 163 48 187 145 134047 21849 231257 172 165 3506 441946 133 1201 122 3 142 56 210 198 279488 49809 258287 254 246 1552 215177 43 575 54 0 80 45 166 152 79756 21654 122531 90 89 1476 140328 48 507 63 0 65 40 145 112 66089 8728 61394 50 49 3105 318092 366 1033 162 4 94 48 187 173 102070 20920 86480 113 107 4541 466139 198 1574 162 5 128 50 186 177 146760 27195 195791 187 182 1876 162406 63 576 107 16 63 43 164 153 154771 1037 18284 16 16 4469 417354 142 1834 146 6 127 46 172 161 165933 42570 147581 175 173 2113 178322 86 790 77 5 60 40 147 115 64593 17672 72558 90 90 2046 292443 54 668 87 2 118 45 167 147 92280 34245 147341 140 140 2564 283913 100 905 192 1 110 46 158 124 67150 16786 114651 145 142 2209 253950 131 723 75 2 48 37 144 57 128692 20954 100187 141 126 4123 389698 126 1619 131 9 96 45 169 144 124089 16378 130332 125 123 2340 246963 93 811 67 1 128 39 145 126 125386 31852 134218 241 239 2035 173260 63 716 37 3 41 21 79 78 37238 2805 10901 16 15 3241 346748 108 1034 61 11 146 50 194 153 140015 38086 145758 175 170 2056 188437 62 782 127 5 147 55 212 196 150047 21166 75767 132 123 2872 279125 98 1103 58 2 121 40 148 130 154451 34672 134969 154 151 2749 314070 113 852 71 1 185 48 171 159 156349 36171 169216 198 194 2 1 0 0 0 9 0 0 0 0 0 0 0 0 0 207 14688 10 85 0 0 4 0 0 0 6023 2065 7953 5 5 5 98 1 0 0 0 0 0 0 0 0 0 0 0 0 8 455 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2449 291847 95 816 72 2 85 46 141 94 84601 19354 105406 125 122 3497 415839 170 1145 123 3 164 52 204 129 68946 22124 174586 174 173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 203 4 0 0 0 0 0 0 0 0 0 0 0 0 151 7199 5 74 0 0 7 0 0 0 1644 556 4245 6 6 475 46660 21 259 7 0 12 5 15 13 6179 2089 21509 13 13 141 17547 5 69 3 0 0 1 4 4 3926 2658 7670 3 3 1145 121550 46 309 106 0 37 48 172 89 52789 1813 15673 35 35 29 969 2 0 0 0 0 0 0 0 0 0 0 0 0 2080 242774 75 695 53 2 62 34 125 71 100350 17372 75882 80 72
Names of X columns:
#Pageviews TimeRFC #Logins #CCviews #Creviews #Shared #BloggedComputations #ReviewedCompendiums #submittedFBmessages #Peerreviews+120 #Compendiumcharacters #Compendiumrevisions #secondscompendium #includedhyperlinks #includedblogs
Endogenous Variable (Column Number)
Categorization
none
none
quantiles
hclust
equal
Number of categories (only if categorization<>none)
Cross-Validation? (only if categorization<>none)
no
no
yes
Chart options
R Code
library(party) library(Hmisc) par1 <- as.numeric(par1) par3 <- as.numeric(par3) x <- data.frame(t(y)) is.data.frame(x) x <- x[!is.na(x[,par1]),] k <- length(x[1,]) n <- length(x[,1]) colnames(x)[par1] x[,par1] if (par2 == 'kmeans') { cl <- kmeans(x[,par1], par3) print(cl) clm <- matrix(cbind(cl$centers,1:par3),ncol=2) clm <- clm[sort.list(clm[,1]),] for (i in 1:par3) { cl$cluster[cl$cluster==clm[i,2]] <- paste('C',i,sep='') } cl$cluster <- as.factor(cl$cluster) print(cl$cluster) x[,par1] <- cl$cluster } if (par2 == 'quantiles') { x[,par1] <- cut2(x[,par1],g=par3) } if (par2 == 'hclust') { hc <- hclust(dist(x[,par1])^2, 'cen') print(hc) memb <- cutree(hc, k = par3) dum <- c(mean(x[memb==1,par1])) for (i in 2:par3) { dum <- c(dum, mean(x[memb==i,par1])) } hcm <- matrix(cbind(dum,1:par3),ncol=2) hcm <- hcm[sort.list(hcm[,1]),] for (i in 1:par3) { memb[memb==hcm[i,2]] <- paste('C',i,sep='') } memb <- as.factor(memb) print(memb) x[,par1] <- memb } if (par2=='equal') { ed <- cut(as.numeric(x[,par1]),par3,labels=paste('C',1:par3,sep='')) x[,par1] <- as.factor(ed) } table(x[,par1]) colnames(x) colnames(x)[par1] x[,par1] if (par2 == 'none') { m <- ctree(as.formula(paste(colnames(x)[par1],' ~ .',sep='')),data = x) } load(file='createtable') if (par2 != 'none') { m <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data = x) if (par4=='yes') { a<-table.start() a<-table.row.start(a) a<-table.element(a,'10-Fold Cross Validation',3+2*par3,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'',1,TRUE) a<-table.element(a,'Prediction (training)',par3+1,TRUE) a<-table.element(a,'Prediction (testing)',par3+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Actual',1,TRUE) for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE) a<-table.element(a,'CV',1,TRUE) for (jjj in 1:par3) a<-table.element(a,paste('C',jjj,sep=''),1,TRUE) a<-table.element(a,'CV',1,TRUE) a<-table.row.end(a) for (i in 1:10) { ind <- sample(2, nrow(x), replace=T, prob=c(0.9,0.1)) m.ct <- ctree(as.formula(paste('as.factor(',colnames(x)[par1],') ~ .',sep='')),data =x[ind==1,]) if (i==1) { m.ct.i.pred <- predict(m.ct, newdata=x[ind==1,]) m.ct.i.actu <- x[ind==1,par1] m.ct.x.pred <- predict(m.ct, newdata=x[ind==2,]) m.ct.x.actu <- x[ind==2,par1] } else { m.ct.i.pred <- c(m.ct.i.pred,predict(m.ct, newdata=x[ind==1,])) m.ct.i.actu <- c(m.ct.i.actu,x[ind==1,par1]) m.ct.x.pred <- c(m.ct.x.pred,predict(m.ct, newdata=x[ind==2,])) m.ct.x.actu <- c(m.ct.x.actu,x[ind==2,par1]) } } print(m.ct.i.tab <- table(m.ct.i.actu,m.ct.i.pred)) numer <- 0 for (i in 1:par3) { print(m.ct.i.tab[i,i] / sum(m.ct.i.tab[i,])) numer <- numer + m.ct.i.tab[i,i] } print(m.ct.i.cp <- numer / sum(m.ct.i.tab)) print(m.ct.x.tab <- table(m.ct.x.actu,m.ct.x.pred)) numer <- 0 for (i in 1:par3) { print(m.ct.x.tab[i,i] / sum(m.ct.x.tab[i,])) numer <- numer + m.ct.x.tab[i,i] } print(m.ct.x.cp <- numer / sum(m.ct.x.tab)) for (i in 1:par3) { a<-table.row.start(a) a<-table.element(a,paste('C',i,sep=''),1,TRUE) for (jjj in 1:par3) a<-table.element(a,m.ct.i.tab[i,jjj]) a<-table.element(a,round(m.ct.i.tab[i,i]/sum(m.ct.i.tab[i,]),4)) for (jjj in 1:par3) a<-table.element(a,m.ct.x.tab[i,jjj]) a<-table.element(a,round(m.ct.x.tab[i,i]/sum(m.ct.x.tab[i,]),4)) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a,'Overall',1,TRUE) for (jjj in 1:par3) a<-table.element(a,'-') a<-table.element(a,round(m.ct.i.cp,4)) for (jjj in 1:par3) a<-table.element(a,'-') a<-table.element(a,round(m.ct.x.cp,4)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') } } m bitmap(file='test1.png') plot(m) dev.off() bitmap(file='test1a.png') plot(x[,par1] ~ as.factor(where(m)),main='Response by Terminal Node',xlab='Terminal Node',ylab='Response') dev.off() if (par2 == 'none') { forec <- predict(m) result <- as.data.frame(cbind(x[,par1],forec,x[,par1]-forec)) colnames(result) <- c('Actuals','Forecasts','Residuals') print(result) } if (par2 != 'none') { print(cbind(as.factor(x[,par1]),predict(m))) myt <- table(as.factor(x[,par1]),predict(m)) print(myt) } bitmap(file='test2.png') if(par2=='none') { op <- par(mfrow=c(2,2)) plot(density(result$Actuals),main='Kernel Density Plot of Actuals') plot(density(result$Residuals),main='Kernel Density Plot of Residuals') plot(result$Forecasts,result$Actuals,main='Actuals versus Predictions',xlab='Predictions',ylab='Actuals') plot(density(result$Forecasts),main='Kernel Density Plot of Predictions') par(op) } if(par2!='none') { plot(myt,main='Confusion Matrix',xlab='Actual',ylab='Predicted') } dev.off() if (par2 == 'none') { detcoef <- cor(result$Forecasts,result$Actuals) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goodness of Fit',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Correlation',1,TRUE) a<-table.element(a,round(detcoef,4)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'R-squared',1,TRUE) a<-table.element(a,round(detcoef*detcoef,4)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'RMSE',1,TRUE) a<-table.element(a,round(sqrt(mean((result$Residuals)^2)),4)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Actuals, Predictions, and Residuals',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'#',header=TRUE) a<-table.element(a,'Actuals',header=TRUE) a<-table.element(a,'Forecasts',header=TRUE) a<-table.element(a,'Residuals',header=TRUE) a<-table.row.end(a) for (i in 1:length(result$Actuals)) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,result$Actuals[i]) a<-table.element(a,result$Forecasts[i]) a<-table.element(a,result$Residuals[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') } if (par2 != 'none') { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Confusion Matrix (predicted in columns / actuals in rows)',par3+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'',1,TRUE) for (i in 1:par3) { a<-table.element(a,paste('C',i,sep=''),1,TRUE) } a<-table.row.end(a) for (i in 1:par3) { a<-table.row.start(a) a<-table.element(a,paste('C',i,sep=''),1,TRUE) for (j in 1:par3) { a<-table.element(a,myt[i,j]) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation