Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
1590 1798 1935 1887 2027 2080 1556 1682 1785 1869 1781 2082 2571 1862 1938 1505 1767 1607 1578 1495 1615 1700 1337 1531 1623 1543 1640 1524 1429 1827 1603 1351 1267 1742 1384 1392 1649 1665 1526 1717 1391 1790 1472 1350 1704 1391 1190 1351 1160 1236 1444 1257 1193 1701 1428 1611 1431 1472 1240 1276
Chart options
R Code
library(Hmisc) m <- mean(x) e <- median(x) bitmap(file='test1.png') op <- par(mfrow=c(2,1)) mydensity1 <- density(x,kernel='gaussian',na.rm=TRUE) plot(mydensity1,main='Density Plot - Gaussian Kernel',xlab='Median (0 -> full line) | Mean (0 -> dashed line)',ylab='density') abline(v=e,lty=1) abline(v=m,lty=5) grid() myseq <- seq(0.01, 0.99, 0.01) hd <- hdquantile(x, probs = myseq, se = TRUE, na.rm = FALSE, names = TRUE, weights=FALSE) plot(myseq,hd,col=2,main='Harrell-Davis Quantiles',xlab='quantiles',ylab='Median (0 -> full) | Mean (0 -> dashed)') abline(h=m,lty=5) abline(h=e,lty=1) grid() par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Median versus Mean',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) a<-table.element(a,mean(x)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) a<-table.element(a,median(x)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation