Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
70.80 66.67 69.60 66.33 69.87 64.33 67.47 64.00 67.60 63.33 67.13 61.33 66.27 64.67 66.73 63.00 68.07 60.67 67.80 63.67 64.80 60.67 64.60 61.67 64.20 62.33 64.20 60.33 63.67 59.67 61.00 60.33 59.67 59.33 59.67 58.67 59.80 58.67 60.73 59.33 59.40 57.33 58.07 59.33 57.47 56.00 70.73 53.67 72.87 58.67 66.00 49.33 66.07 71.33 66.00 70.33 66.27 69.00 64.00 66.00 63.67 66.00 63.73 63.33 63.33 65.33 63.53 64.33 63.53 64.00 62.87 61.67 59.53 63.67 62.80 64.67 60.80 61.67 59.80 62.00 56.67 61.33 57.67 63.67 58.40 61.33 55.47 62.33 56.20 59.67 71.53 59.33 68.67 61.67 65.67 58.67 66.73 58.00 67.33 56.67 66.73 59.67 66.87 58.00 65.80 57.00 64.73 57.67 65.47 58.67 63.60 55.33 64.07 56.00 64.67 55.67 63.73 53.33 62.53 53.67 61.93 51.00 62.67 47.00 62.80 4.33 61.33 70.00 62.60 68.67 59.13 67.67 61.27 66.00 59.47 65.67 57.87 65.67 59.73 63.67 61.40 63.67 58.80 64.00 58.33 62.00 57.47 62.00 57.13 61.67 55.00 61.67 51.53 63.33 72.73 61.00 73.00 62.33 70.80 60.33 70.07 60.33 71.67 60.67 71.07 57.67 70.67 58.33 70.73 58.00 70.73 57.33 68.60 56.67 69.60 58.00 66.47 55.33 67.07 55.67 68.67 54.67 66.93 56.33 65.93 55.00 68.87 55.00 66.53 54.67 65.80 54.33 66.60 49.00 66.00 48.33 65.00 49.67 66.80 43.67 65.60 6.33 66.00 3.00 65.67 66.67 64.67 67.33 65.07 65.33 64.67 66.00 65.07 65.67 65.20 66.67 64.87 65.67 63.47 65.00 62.60 64.67 64.07 66.67 63.73 63.67 64.67 63.33 61.60 63.67 61.60 63.33 60.47 63.67 61.27 63.00 63.00 61.67 61.47 61.33 60.87 60.67 61.67 60.00 62.87 61.67 62.40 61.33 59.73 58.67 60.13 60.33 58.80 59.67 59.60 59.33 58.93 59.67 60.13 61.00 58.20 61.00 58.27 60.00 58.27 60.00 55.07 58.67 53.87 58.33 52.33 58.00 47.20 56.33 37.93 54.67 72.73 55.33 70.07 54.00 70.67 52.67 72.07 44.00 68.80 65.67 68.80 65.00 67.47 66.33 66.73 64.00 66.53 62.33 66.00 61.33 67.60 63.00 66.00 63.67 66.00 62.00 66.53 61.33 65.80 64.67 64.27 62.67 64.67 64.00 64.60 61.00 64.13 60.67 65.47 59.67 62.93 60.33 63.53 56.67 62.13 56.67 63.87 54.33 64.67 51.00 63.33 51.00 63.13 47.00 62.80 68.00 62.40 65.00 62.40 64.00 62.60 64.00 61.47 64.00 62.20 62.00 63.00 61.00 61.80 60.00 59.73 60.00 60.33 62.00 60.13 60.00 59.53 59.00 59.00 61.00 55.93 60.00 41.87 60.00 36.33 58.00 71.67 58.00 71.47 60.00 70.47 58.00 69.53 59.00 70.73 56.00 69.93 54.00 68.73 51.00 67.53 47.00
Names of X columns:
pment nopment
Type of Correlation
spearman
pearson
spearman
kendall
Chart options
Title:
R Code
panel.tau <- function(x, y, digits=2, prefix='', cex.cor) { usr <- par('usr'); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) rr <- cor.test(x, y, method=par1) r <- round(rr$p.value,2) txt <- format(c(r, 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep='') if(missing(cex.cor)) cex <- 0.5/strwidth(txt) text(0.5, 0.5, txt, cex = cex) } panel.hist <- function(x, ...) { usr <- par('usr'); on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...) } bitmap(file='test1.png') pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main) dev.off() load(file='createtable') n <- length(y[,1]) n a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ',header=TRUE) for (i in 1:n) { a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE) } a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE) for (j in 1:n) { r <- cor.test(y[i,],y[j,],method=par1) a<-table.element(a,round(r$estimate,3)) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'pair',1,TRUE) a<-table.element(a,'Pearson r',1,TRUE) a<-table.element(a,'Spearman rho',1,TRUE) a<-table.element(a,'Kendall tau',1,TRUE) a<-table.row.end(a) cor.test(y[1,],y[2,],method=par1) for (i in 1:(n-1)) { for (j in (i+1):n) { a<-table.row.start(a) dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='') a<-table.element(a,dum,header=TRUE) rp <- cor.test(y[i,],y[j,],method='pearson') a<-table.element(a,round(rp$estimate,4)) rs <- cor.test(y[i,],y[j,],method='spearman') a<-table.element(a,round(rs$estimate,4)) rk <- cor.test(y[i,],y[j,],method='kendall') a<-table.element(a,round(rk$estimate,4)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=T) a<-table.element(a,paste('(',round(rp$p.value,4),')',sep='')) a<-table.element(a,paste('(',round(rs$p.value,4),')',sep='')) a<-table.element(a,paste('(',round(rk$p.value,4),')',sep='')) a<-table.row.end(a) } } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation