Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
41.81 46.12 40.25 50.9 50.37 47.32 43.12 47.05 40.46 49.55 42.89 48.33 54.29 44.49 56.13 51.64 51.76 46.55 42.92 54.79 45.58 47.51 47.37 50.83 48.27 48.41 47.02 53.83 52.23 52.95 64.02 56.88 52.36 48.5 53.97 53.29 60.45 54.06 47.76 56.66 47.44 48.88 48.35 44.46 49.21 49.63 52.12 49.12 44.39 56.88 48.89 46.89 54.04 55.97 40.31 50.42 50.51 52.67 52.33 51.28 44.52 55.89 55.59 54.55 54.27 48.8 49.18 52.39 40.75 56.8 45.36 46.69 43.54 44.01 48.82 50.51 54.05 56.01 57.47 61.45
Names of X columns:
Standard New-method
Alternative
two.sided
two.sided
less
greater
Column number for the first variable
Column number for the second variable
Test to Perform
T-Test
Wilcoxon-Mann_Whitney
T-Test
Are observations paired?
paired
unpaired
paired
Value of Difference of Means to Test
Confidence Level to test
(?)
Display a Boxplot
TRUE
TRUE
FALSE
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.character(par4) par5 <- as.character(par5) par6 <- as.numeric(par6) par7 <- as.numeric(par7) par8 <- as.logical(par8) if ( par5 == 'unpaired') paired <- FALSE else paired <- TRUE x <- t(y) if(par8){ bitmap(file='test1.png') (r<-boxplot(x ,xlab=xlab,ylab=ylab,main=main,notch=FALSE,col=2)) dev.off() } load(file='createtable') if( par4 == 'Wilcoxon-Mann_Whitney'){ a<-table.start() a <- table.row.start(a) a <- table.element(a,'Wilcoxon Test',3,TRUE) a <- table.row.end(a) a <- table.row.start(a) a <- table.element(a,'',1,TRUE) a <- table.element(a,'Statistic',1,TRUE) a <- table.element(a,'P-value',1,TRUE) a <- table.row.end(a) W <- wilcox.test(x[,par2],x[,par3],alternative=par1, paired = paired) a<-table.row.start(a) a<-table.element(a,'Wilcoxon Test',1,TRUE) a<-table.element(a,W$statistic[[1]]) a<-table.element(a,round(W$p.value, digits=5) ) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') } if( par4 == 'T-Test') { T <- t.test(x[,par2],x[,par3],alternative=par1, paired=paired, mu=par6, conf.level=par7) a<-table.start() a <- table.row.start(a) a <- table.element(a,'T-Test',3,TRUE) a <- table.row.end(a) if(paired){ a <- table.row.start(a) a <- table.element(a,'Difference: Mean1 - Mean2',1,TRUE) a<-table.element(a,round(T$estimate, digits=5) ) a <- table.row.end(a) } if(!paired){ a <- table.row.start(a) a <- table.element(a,'Mean1',1,TRUE) a<-table.element(a,round(T$estimate[1], digits=5) ) a <- table.row.end(a) a <- table.row.start(a) a <- table.element(a,'Mean2',1,TRUE) a<-table.element(a,round(T$estimate[2], digits=5) ) a <- table.row.end(a) } a <- table.row.start(a) a <- table.element(a,'T Statistic',1,TRUE) a<-table.element(a,round(T$statistic, digits=5) ) a <- table.row.end(a) a <- table.row.start(a) a <- table.element(a,'P-value',1,TRUE) a<-table.element(a,round(T$p.value, digits=5) ) a <- table.row.end(a) a <- table.row.start(a) a <- table.element(a,'Lower Confidence Limit',1,TRUE) a<-table.element(a,round(T$conf.int[1], digits=5) ) a <- table.row.end(a) a<-table.row.start(a) a <- table.element(a,'Upper Confidence Limit',1,TRUE) a<-table.element(a,round(T$conf.int[2], digits=5) ) a <- table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') } a<-table.start() a <- table.row.start(a) a <- table.element(a,'Standard Deviations',3,TRUE) a <- table.row.end(a) a <- table.row.start(a) a <- table.element(a,'Variable 1',1,TRUE) a<-table.element(a,round(sd(x[,par2]), digits=5) ) a <- table.row.end(a) a <- table.row.start(a) a <- table.element(a,'Variable 2',1,TRUE) a<-table.element(a,round(sd(x[,par3]), digits=5) ) a <- table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation