Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
76035 74427 73354 73081 75309 75463 75910 76151 76882 78632 80137 82490 79896 81303 79344 81355 82328 79669 77249 75101 72520 72438 72653 71429 69189 66451 63354 61379 61880 62274 62429 63905 63917 64295 61930 60440 59353 58695 60569 60386 60938 61795 63304 64270 63492 61333 59341 58412 58725 59277 58562 57858 58790 58243 57044 57339 59429 60575 61950 61712
# simulations
blockwidth of bootstrap
Significant digits
Quantiles
P1 P5 Q1 Q3 P95 P99
P0.5 P2.5 Q1 Q3 P97.5 P99.5
P10 P20 Q1 Q3 P80 P90
bandwidth
Chart options
R Code
par1 <- as.numeric(par1) par2 <- as.numeric(par2) if (par1 < 10) par1 = 10 if (par1 > 5000) par1 = 5000 if (par2 < 3) par2 = 3 if (par2 > length(x)) par2 = length(x) library(lattice) library(boot) boot.stat <- function(s) { s.mean <- mean(s) s.median <- median(s) c(s.mean, s.median) } (r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed')) z <- data.frame(cbind(r$t[,1],r$t[,2])) colnames(z) <- list('mean','median') bitmap(file='plot7.png') b <- boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency') grid() dev.off() b load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'statistic',header=TRUE) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,'Estimate',header=TRUE) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'IQR',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) q1 <- quantile(r$t[,1],0.25)[[1]] q3 <- quantile(r$t[,1],0.75)[[1]] a<-table.element(a,q1) a<-table.element(a,r$t0[1]) a<-table.element(a,q3) a<-table.element(a,sqrt(var(r$t[,1]))) a<-table.element(a,q3-q1) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) q1 <- quantile(r$t[,2],0.25)[[1]] q3 <- quantile(r$t[,2],0.75)[[1]] a<-table.element(a,q1) a<-table.element(a,r$t0[2]) a<-table.element(a,q3) a<-table.element(a,sqrt(var(r$t[,2]))) a<-table.element(a,q3-q1) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'95% Confidence Intervals',3,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'',1,TRUE) a<-table.element(a,'Mean',1,TRUE) a<-table.element(a,'Median',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Lower Bound',1,TRUE) a<-table.element(a,b$conf[1,1]) a<-table.element(a,b$conf[1,2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Upper Bound',1,TRUE) a<-table.element(a,b$conf[2,1]) a<-table.element(a,b$conf[2,2]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation