Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
61 81 87 87 136 147 168 185 137 125 64 45 35 -4 88 85 95 128 186 182 151 106 60 44 30 54 72 88 153 168 181 180 149 84 85 42 54 30 96 110 141 159 164 155 135 93 28 56 56 22 76 83 121 151 208 179 139 99 103 57 44 70 58 91 126 146 199 194 145 131 74 -3 7 10 34 94 105 151 162 175 128 115 62 11 -7 64 80 77 127 158 173 206 147 103 73 52 52 68 77 94 147 160 166 167 155 104 44 53 56 36 76 99 142 150 190 176 175 112 73 52 48 61 68 97 146 160 155 175 163 117 82 55 32 48 53 82 139 150 184 185 138 147 77 32 48 72 76 94 133 164 174 187 149 102 86 35 31 28 75 102 133 178 190 190 147 83 83 46 40 50 61 102 117 158 170 190 155 117 68 40 56 28 66 103 122 166 176 164 160 139 75 44 22 32 42 86 140 163 222 166 183 140 98 69 75 63 81 126 139 171 170 173 144 105 75 41 68 53 61 87 155 159 180 175 138 105 73 26 12 35 64 115 138 138 182 191 155 113 98 29
Sample Range:
(leave blank to include all observations)
From:
To:
# blockwidth
Chart options
R Code
par1 <- as.numeric(par1) (n <- length(x)) (np <- floor(n / par1)) arr <- array(NA,dim=c(par1,np+1)) darr <- array(NA,dim=c(par1,np+1)) ari <- array(0,dim=par1) dx <- diff(x) j <- 0 for (i in 1:n) { j = j + 1 ari[j] = ari[j] + 1 arr[j,ari[j]] <- x[i] darr[j,ari[j]] <- dx[i] if (j == par1) j = 0 } ari arr darr arr.mean <- array(NA,dim=par1) arr.median <- array(NA,dim=par1) arr.midrange <- array(NA,dim=par1) for (j in 1:par1) { arr.mean[j] <- mean(arr[j,],na.rm=TRUE) arr.median[j] <- median(arr[j,],na.rm=TRUE) arr.midrange[j] <- (quantile(arr[j,],0.75,na.rm=TRUE) + quantile(arr[j,],0.25,na.rm=TRUE)) / 2 } overall.mean <- mean(x) overall.median <- median(x) overall.midrange <- (quantile(x,0.75) + quantile(x,0.25)) / 2 bitmap(file='plot1.png') plot(arr.mean,type='b',ylab='mean',main='Mean Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.mean,0) dev.off() bitmap(file='plot2.png') plot(arr.median,type='b',ylab='median',main='Median Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.median,0) dev.off() bitmap(file='plot3.png') plot(arr.midrange,type='b',ylab='midrange',main='Midrange Plot',xlab='Periodic Index') mtext(paste('#blocks = ',np)) abline(overall.midrange,0) dev.off() bitmap(file='plot4.png') z <- data.frame(t(arr)) names(z) <- c(1:par1) (boxplot(z,notch=TRUE,col='grey',xlab='Periodic Index',ylab='Value',main='Notched Box Plots - Periodic Subseries')) dev.off() bitmap(file='plot4b.png') z <- data.frame(t(darr)) names(z) <- c(1:par1) (boxplot(z,notch=TRUE,col='grey',xlab='Periodic Index',ylab='Value',main='Notched Box Plots - Differenced Periodic Subseries')) dev.off() bitmap(file='plot5.png') z <- data.frame(arr) names(z) <- c(1:np) (boxplot(z,notch=TRUE,col='grey',xlab='Block Index',ylab='Value',main='Notched Box Plots - Sequential Blocks')) dev.off() bitmap(file='plot6.png') z <- data.frame(cbind(arr.mean,arr.median,arr.midrange)) names(z) <- list('mean','median','midrange') (boxplot(z,notch=TRUE,col='grey',ylab='Overall Central Tendency',main='Notched Box Plots')) dev.off()
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation