Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
2 88 2 94 3 90 1 73 1 68 2 80 2 86 1 86 3 91 1 79 3 96 2 92 1 72 2 96 2 70 2 86 1 87 3 88 2 79 1 90 1 95 1 85 2 90 3 115 2 84 2 79 2 94 2 97 2 86 3 111 2 87 2 98 2 87 1 68 2 88 2 82 3 111 1 75 2 94 1 95 2 80 2 95 2 68 2 94 2 88 1 84 2 101 2 98 1 78 3 109 1 102 1 81 1 97 2 75 2 97 1 101 1 101 2 95 2 95 2 95 2 90 3 107 2 92 1 86 1 70 2 95 2 96 2 91 3 87 2 92 2 97 3 102 1 91 2 68 1 88 2 97 2 90 2 101 2 94 3 101 3 109 2 100 2 103 2 94 2 97 2 85 2 75 1 77 1 87 1 78 3 108 2 97 2 105 2 106 2 107 1 95 2 107 2 115 2 101 1 85 2 90 3 115 2 95 1 97 1 112 1 97 1 77 2 90 2 94 3 103 2 77 2 98 2 90 3 111 1 77 3 88 1 75 2 92 2 78 2 106 1 80 2 87 1 92 3 111 2 86 2 85 1 90 3 101 2 94 1 86 1 86 1 90 1 75 2 86 3 91 2 97 2 91 1 70 2 98 1 96 1 95 2 100 2 95 2 97 2 97 3 92 3 115 3 88 2 87 2 100 2 98 1 102 1 96
Names of X columns:
MWARM30 WISCRY7V
Response Variable (column number)
Factor Variable (column number)
Include Intercept Term ?
TRUE
TRUE
FALSE
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
cat1 <- as.numeric(par1) # cat2<- as.numeric(par2) # intercept<-as.logical(par3) x <- t(x) x1<-as.numeric(x[,cat1]) f1<-as.character(x[,cat2]) xdf<-data.frame(x1,f1) (V1<-dimnames(y)[[1]][cat1]) (V2<-dimnames(y)[[1]][cat2]) names(xdf)<-c('Response', 'Treatment') if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) ) (aov.xdf<-aov(lmxdf) ) (anova.xdf<-anova(lmxdf) ) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'means',,TRUE) for(i in 1:length(lmxdf$coefficients)){ a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE) } a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Statistics', 5+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ',,TRUE) a<-table.element(a, 'Df',,FALSE) a<-table.element(a, 'Sum Sq',,FALSE) a<-table.element(a, 'Mean Sq',,FALSE) a<-table.element(a, 'F value',,FALSE) a<-table.element(a, 'Pr(>F)',,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, V2,,TRUE) a<-table.element(a, anova.xdf$Df[1],,FALSE) a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residuals',,TRUE) a<-table.element(a, anova.xdf$Df[2],,FALSE) a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE) a<-table.element(a, ' ',,FALSE) a<-table.element(a, ' ',,FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') bitmap(file='anovaplot.png') boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1) dev.off() if(intercept==TRUE){ thsd<-TukeyHSD(aov.xdf) bitmap(file='TukeyHSDPlot.png') plot(thsd) dev.off() } if(intercept==TRUE){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ', 1, TRUE) for(i in 1:4){ a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE) } a<-table.row.end(a) for(i in 1:length(rownames(thsd[[1]]))){ a<-table.row.start(a) a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE) for(j in 1:4){ a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') } if(intercept==FALSE){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'TukeyHSD Message', 1,TRUE) a<-table.row.end(a) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab') } library(car) lt.lmxdf<-levene.test(lmxdf) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ', 1, TRUE) for (i in 1:3){ a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Group', 1, TRUE) for (i in 1:3){ a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ', 1, TRUE) a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE) a<-table.element(a,' ', 1, FALSE) a<-table.element(a,' ', 1, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation