Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
3440 2678 2981 2260 2844 2546 2456 2295 2379 2479 2057 2280 2351 2276 2548 2311 2201 2725 2408 2139 1898 2539 2070 2063 2565 2442 2194 2798 2074 2628 2289 2154 2467 2137 1850 2075 1791 1755 2232 1952 1822 2522 2074 2366 2173 2094 1833 1858 2040 2133 2921 3252 3318 3554 2308 1621 1315 1501 1418 1657
Seasonal period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Number of Forecasts
12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Algorithm
BFGS
L-BFGS-B
Chart options
R Code
par1 <- as.numeric(par1) nx <- length(x) x <- ts(x,frequency=par1) m <- StructTS(x,type='BSM') m$coef m$fitted m$resid mylevel <- as.numeric(m$fitted[,'level']) myslope <- as.numeric(m$fitted[,'slope']) myseas <- as.numeric(m$fitted[,'sea']) myresid <- as.numeric(m$resid) myfit <- mylevel+myseas mylagmax <- nx/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level') acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(mylevel,main='Level') spectrum(myseas,main='Seasonal') spectrum(myresid,main='Standardized Residals') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(mylevel,main='Level') cpgram(myseas,main='Seasonal') cpgram(myresid,main='Standardized Residals') par(op) dev.off() bitmap(file='test1.png') plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b') grid() dev.off() bitmap(file='test5.png') op <- par(mfrow = c(2,2)) hist(m$resid,main='Residual Histogram') plot(density(m$resid),main='Residual Kernel Density') qqnorm(m$resid,main='Residual Normal QQ Plot') qqline(m$resid) plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Structural Time Series Model',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Level',header=TRUE) a<-table.element(a,'Slope',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Stand. Residuals',header=TRUE) a<-table.row.end(a) for (i in 1:nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,mylevel[i]) a<-table.element(a,myslope[i]) a<-table.element(a,myseas[i]) a<-table.element(a,myresid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation