Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
235.1 280.7 264.6 240.7 201.4 240.8 241.1 223.8 206.1 174.7 203.3 220.5 299.5 347.4 338.3 327.7 351.6 396.6 438.8 395.6 363.5 378.8 357 369 464.8 479.1 431.3 366.5 326.3 355.1 331.6 261.3 249 205.5 235.6 240.9 264.9 253.8 232.3 193.8 177 213.2 207.2 180.6 188.6 175.4 199 179.6 225.8 234 200.2 183.6 178.2 203.2 208.5 191.8 172.8 148 159.4 154.5 213.2 196.4 182.8 176.4 153.6 173.2 171 151.2 161.9 157.2 201.7 236.4 356.1 398.3 403.7 384.6 365.8 368.1 367.9 347 343.3 292.9 311.5 300.9 366.9 356.9 329.7 316.2 269 289.3 266.2 253.6 233.8 228.4 253.6 260.1 306.6 309.2 309.5 271 279.9 317.9 298.4 246.7 227.3 209.1 259.9 266 320.6 308.5 282.2 262.7 263.5 313.1 284.3 252.6 250.3 246.5 312.7 333.2 446.4 511.6 515.5 506.4 483.2 522.3 509.8 460.7 405.8 375 378.5 406.8 467.8 469.8 429.8 355.8 332.7 378 360.5 334.7 319.5 323.1 363.6 352.1 411.9 388.6 416.4 360.7 338 417.2 388.4 371.1 331.5 353.7 396.7 447 533.5 565.4 542.3 488.7 467.1 531.3 496.1 444 403.4 386.3 394.1 404.1 462.1 448.1 432.3 386.3 395.2 421.9 382.9 384.2 345.5 323.4 372.6 376 462.7 487 444.2 399.3 394.9 455.4 414 375.5 347 339.4 385.8 378.8 451.8 446.1 422.5 383.1 352.8 445.3 367.5 355.1 326.2 319.8 331.8 340.9 394.1 417.2 369.9 349.2 321.4 405.7 342.9 316.5 284.2 270.9 288.8 278.8 324.4 310.9 299 273 279.3 359.2 305 282.1 250.3 246.5 257.9 266.5 315.9 318.4 295.4 266.4 245.8 362.8 324.9 294.2 289.5 295.2 290.3 272 307.4 328.7 292.9 249.1 230.4 361.5 321.7 277.2 260.7 251 257.6 241.8 287.5 292.3 274.7 254.2 230 339 318.2 287 295.8 284 271 262.7 340.6 379.4 373.3 355.2 338.4 466.9 451 422 429.2 425.9 460.7 463.6 541.4 544.2 517.5 469.4 439.4 549 533 506.1 484 457 481.5 469.5 544.7 541.2 521.5 469.7 434.4 542.6 517.3 485.7 465.8 447 426.6 411.6 467.5 484.5 451.2 417.4 379.9 484.7 455 420.8 416.5 376.3 405.6 405.8 500.8 514 475.5 430.1 414.4 538 526 488.5 520.2 504.4 568.5 610.6 818 830.9 835.9 782 762.3 856.9 820.9 769.6 752.2 724.4 723.1 719.5 817.4 803.3 752.5 689 630.4 765.5 757.7 732.2 702.6 683.3 709.5 702.2 784.8 810.9 755.6 656.8 615.1 745.3 694.1 675.7 643.7 622.1 634.6 588 689.7 673.9 647.9 568.8 545.7 632.6 643.8 593.1 579.7 546 562.9 572.5
Seasonal period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Type of Exponential Smoothing
(?)
Double
Single
Double
Triple
Type of seasonality
(?)
additive
additive
multiplicative
Number of Forecasts
12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Chart options
R Code
par1 <- as.numeric(par1) if (par2 == 'Single') K <- 1 if (par2 == 'Double') K <- 2 if (par2 == 'Triple') K <- par1 nx <- length(x) nxmK <- nx - K x <- ts(x, frequency = par1) if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F) if (par2 == 'Double') fit <- HoltWinters(x, gamma=F) if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3) fit myresid <- x - fit$fitted[,'xhat'] bitmap(file='test1.png') op <- par(mfrow=c(2,1)) plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing') plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors') par(op) dev.off() bitmap(file='test2.png') p <- predict(fit, par1, prediction.interval=TRUE) np <- length(p[,1]) plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing') dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF') spectrum(myresid,main='Residals Periodogram') cpgram(myresid,main='Residal Cumulative Periodogram') qqnorm(myresid,main='Residual Normal QQ Plot') qqline(myresid) par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'alpha',header=TRUE) a<-table.element(a,fit$alpha) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'beta',header=TRUE) a<-table.element(a,fit$beta) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'gamma',header=TRUE) a<-table.element(a,fit$gamma) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Fitted',header=TRUE) a<-table.element(a,'Residuals',header=TRUE) a<-table.row.end(a) for (i in 1:nxmK) { a<-table.row.start(a) a<-table.element(a,i+K,header=TRUE) a<-table.element(a,x[i+K]) a<-table.element(a,fit$fitted[i,'xhat']) a<-table.element(a,myresid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Forecast',header=TRUE) a<-table.element(a,'95% Lower Bound',header=TRUE) a<-table.element(a,'95% Upper Bound',header=TRUE) a<-table.row.end(a) for (i in 1:np) { a<-table.row.start(a) a<-table.element(a,nx+i,header=TRUE) a<-table.element(a,p[i,'fit']) a<-table.element(a,p[i,'lwr']) a<-table.element(a,p[i,'upr']) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation