Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
235.1 280.7 264.6 240.7 201.4 240.8 241.1 223.8 206.1 174.7 203.3 220.5 299.5 347.4 338.3 327.7 351.6 396.6 438.8 395.6 363.5 378.8 357 369 464.8 479.1 431.3 366.5 326.3 355.1 331.6 261.3 249 205.5 235.6 240.9 264.9 253.8 232.3 193.8 177 213.2 207.2 180.6 188.6 175.4 199 179.6 225.8 234 200.2 183.6 178.2 203.2 208.5 191.8 172.8 148 159.4 154.5 213.2 196.4 182.8 176.4 153.6 173.2 171 151.2 161.9 157.2 201.7 236.4 356.1 398.3 403.7 384.6 365.8 368.1 367.9 347 343.3 292.9 311.5 300.9 366.9 356.9 329.7 316.2 269 289.3 266.2 253.6 233.8 228.4 253.6 260.1 306.6 309.2 309.5 271 279.9 317.9 298.4 246.7 227.3 209.1 259.9 266 320.6 308.5 282.2 262.7 263.5 313.1 284.3 252.6 250.3 246.5 312.7 333.2 446.4 511.6 515.5 506.4 483.2 522.3 509.8 460.7 405.8 375 378.5 406.8 467.8 469.8 429.8 355.8 332.7 378 360.5 334.7 319.5 323.1 363.6 352.1 411.9 388.6 416.4 360.7 338 417.2 388.4 371.1 331.5 353.7 396.7 447 533.5 565.4 542.3 488.7 467.1 531.3 496.1 444 403.4 386.3 394.1 404.1 462.1 448.1 432.3 386.3 395.2 421.9 382.9 384.2 345.5 323.4 372.6 376 462.7 487 444.2 399.3 394.9 455.4 414 375.5 347 339.4 385.8 378.8 451.8 446.1 422.5 383.1 352.8 445.3 367.5 355.1 326.2 319.8 331.8 340.9 394.1 417.2 369.9 349.2 321.4 405.7 342.9 316.5 284.2 270.9 288.8 278.8 324.4 310.9 299 273 279.3 359.2 305 282.1 250.3 246.5 257.9 266.5 315.9 318.4 295.4 266.4 245.8 362.8 324.9 294.2 289.5 295.2 290.3 272 307.4 328.7 292.9 249.1 230.4 361.5 321.7 277.2 260.7 251 257.6 241.8 287.5 292.3 274.7 254.2 230 339 318.2 287 295.8 284 271 262.7 340.6 379.4 373.3 355.2 338.4 466.9 451 422 429.2 425.9 460.7 463.6 541.4 544.2 517.5 469.4 439.4 549 533 506.1 484 457 481.5 469.5 544.7 541.2 521.5 469.7 434.4 542.6 517.3 485.7 465.8 447 426.6 411.6 467.5 484.5 451.2 417.4 379.9 484.7 455 420.8 416.5 376.3 405.6 405.8 500.8 514 475.5 430.1 414.4 538 526 488.5 520.2 504.4 568.5 610.6 818 830.9 835.9 782 762.3 856.9 820.9 769.6 752.2 724.4 723.1 719.5 817.4 803.3 752.5 689 630.4 765.5 757.7 732.2 702.6 683.3 709.5 702.2 784.8 810.9 755.6 656.8 615.1 745.3 694.1 675.7 643.7 622.1 634.6 588 689.7 673.9 647.9 568.8 545.7 632.6 643.8 593.1 579.7 546 562.9 572.5
Sample Range:
(leave blank to include all observations)
From:
To:
Number of time lags
Default
Default
5
6
7
8
9
10
11
12
24
36
48
60
Box-Cox transformation parameter (Lambda)
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree of non-seasonal differencing (d)
0
0
1
2
Degree of seasonal differencing (D)
0
0
1
2
Seasonality
12
12
1
2
3
4
6
12
CI type
White Noise
White Noise
MA
Confidence Interval
Use logarithms with this base
(overrules the Box-Cox lambda parameter)
(?)
Chart options
R Code
if (par1 == 'Default') { par1 = 10*log10(length(x)) } else { par1 <- as.numeric(par1) } par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) par5 <- as.numeric(par5) if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma' par7 <- as.numeric(par7) if (par8 != '') par8 <- as.numeric(par8) ox <- x if (par8 == '') { if (par2 == 0) { x <- log(x) } else { x <- (x ^ par2 - 1) / par2 } } else { x <- log(x,base=par8) } if (par3 > 0) x <- diff(x,lag=1,difference=par3) if (par4 > 0) x <- diff(x,lag=par5,difference=par4) bitmap(file='picts.png') op <- par(mfrow=c(2,1)) plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value') if (par8=='') { mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='') mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='') } else { mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='') mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='') } plot(x,type='l', main=mytitle,xlab='time',ylab='value') par(op) dev.off() bitmap(file='pic1.png') racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub) dev.off() bitmap(file='pic2.png') rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub) dev.off() (myacf <- c(racf$acf)) (mypacf <- c(rpacf$acf)) lengthx <- length(x) sqrtn <- sqrt(lengthx) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/basics.htm','ACF(k)','click here for more information about the Autocorrelation Function'),header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 2:(par1+1)) { a<-table.row.start(a) a<-table.element(a,i-1,header=TRUE) a<-table.element(a,round(myacf[i],6)) mytstat <- myacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Partial Autocorrelation Function',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Time lag k',header=TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/basics.htm','PACF(k)','click here for more information about the Partial Autocorrelation Function'),header=TRUE) a<-table.element(a,'T-STAT',header=TRUE) a<-table.element(a,'P-value',header=TRUE) a<-table.row.end(a) for (i in 1:par1) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,round(mypacf[i],6)) mytstat <- mypacf[i]*sqrtn a<-table.element(a,round(mytstat,4)) a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation