Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
213.511 380.531 242.344 250.407 183.613 191.835 266.793 246.542 330.563 403.556 208.108 324.04 308.532 199.297 200.156 262.875 287.069 190.157 199.746 265.777 435.956 72.844 756.46 206.771 4202.361 401.422 216.046 39.047 441.437
Sample Range:
(leave blank to include all observations)
From:
To:
R Code
num <- 50 res <- array(NA,dim=c(num,3)) q1 <- function(data,n,p,i,f) { np <- n*p; i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q2 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q3 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- data[i+1] } } q4 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- (data[i]+data[i+1])/2 } else { qvalue <- data[i+1] } } q5 <- function(data,n,p,i,f) { np <- (n-1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i+1] } else { qvalue <- data[i+1] + f*(data[i+2]-data[i+1]) } } q6 <- function(data,n,p,i,f) { np <- n*p+0.5 i <<- floor(np) f <<- np - i qvalue <- data[i] } q7 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- f*data[i] + (1-f)*data[i+1] } } q8 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { if (f == 0.5) { qvalue <- (data[i]+data[i+1])/2 } else { if (f < 0.5) { qvalue <- data[i] } else { qvalue <- data[i+1] } } } } iqd <- function(x,def) { x <-sort(x[!is.na(x)]) n<-length(x) if (def==1) { qvalue1 <- q1(x,n,0.25,i,f) qvalue3 <- q1(x,n,0.75,i,f) } if (def==2) { qvalue1 <- q2(x,n,0.25,i,f) qvalue3 <- q2(x,n,0.75,i,f) } if (def==3) { qvalue1 <- q3(x,n,0.25,i,f) qvalue3 <- q3(x,n,0.75,i,f) } if (def==4) { qvalue1 <- q4(x,n,0.25,i,f) qvalue3 <- q4(x,n,0.75,i,f) } if (def==5) { qvalue1 <- q5(x,n,0.25,i,f) qvalue3 <- q5(x,n,0.75,i,f) } if (def==6) { qvalue1 <- q6(x,n,0.25,i,f) qvalue3 <- q6(x,n,0.75,i,f) } if (def==7) { qvalue1 <- q7(x,n,0.25,i,f) qvalue3 <- q7(x,n,0.75,i,f) } if (def==8) { qvalue1 <- q8(x,n,0.25,i,f) qvalue3 <- q8(x,n,0.75,i,f) } iqdiff <- qvalue3 - qvalue1 return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1))) } range <- max(x) - min(x) lx <- length(x) biasf <- (lx-1)/lx varx <- var(x) bvarx <- varx*biasf sdx <- sqrt(varx) mx <- mean(x) bsdx <- sqrt(bvarx) x2 <- x*x mse0 <- sum(x2)/lx xmm <- x-mx xmm2 <- xmm*xmm msem <- sum(xmm2)/lx axmm <- abs(x - mx) medx <- median(x) axmmed <- abs(x - medx) xmmed <- x - medx xmmed2 <- xmmed*xmmed msemed <- sum(xmmed2)/lx qarr <- array(NA,dim=c(8,3)) for (j in 1:8) { qarr[j,] <- iqd(x,j) } sdpo <- 0 adpo <- 0 for (i in 1:(lx-1)) { for (j in (i+1):lx) { ldi <- x[i]-x[j] aldi <- abs(ldi) sdpo = sdpo + ldi * ldi adpo = adpo + aldi } } denom <- (lx*(lx-1)/2) sdpo = sdpo / denom adpo = adpo / denom gmd <- 0 for (i in 1:lx) { for (j in 1:lx) { ldi <- abs(x[i]-x[j]) gmd = gmd + ldi } } gmd <- gmd / (lx*(lx-1)) sumx <- sum(x) pk <- x / sumx ck <- cumsum(pk) dk <- array(NA,dim=lx) for (i in 1:lx) { if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i] } bigd <- sum(dk) * 2 / (lx-1) iod <- 1 - sum(pk*pk) res[1,] <- c('Absolute range','http://www.xycoon.com/absolute.htm', range) res[2,] <- c('Relative range (unbiased)','http://www.xycoon.com/relative.htm', range/sd(x)) res[3,] <- c('Relative range (biased)','http://www.xycoon.com/relative.htm', range/sqrt(varx*biasf)) res[4,] <- c('Variance (unbiased)','http://www.xycoon.com/unbiased.htm', varx) res[5,] <- c('Variance (biased)','http://www.xycoon.com/biased.htm', bvarx) res[6,] <- c('Standard Deviation (unbiased)','http://www.xycoon.com/unbiased1.htm', sdx) res[7,] <- c('Standard Deviation (biased)','http://www.xycoon.com/biased1.htm', bsdx) res[8,] <- c('Coefficient of Variation (unbiased)','http://www.xycoon.com/variation.htm', sdx/mx) res[9,] <- c('Coefficient of Variation (biased)','http://www.xycoon.com/variation.htm', bsdx/mx) res[10,] <- c('Mean Squared Error (MSE versus 0)','http://www.xycoon.com/mse.htm', mse0) res[11,] <- c('Mean Squared Error (MSE versus Mean)','http://www.xycoon.com/mse.htm', msem) res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'http://www.xycoon.com/mean2.htm', sum(axmm)/lx) res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'http://www.xycoon.com/median1.htm', sum(axmmed)/lx) res[14,] <- c('Median Absolute Deviation from Mean', 'http://www.xycoon.com/mean3.htm', median(axmm)) res[15,] <- c('Median Absolute Deviation from Median', 'http://www.xycoon.com/median2.htm', median(axmmed)) res[16,] <- c('Mean Squared Deviation from Mean', 'http://www.xycoon.com/mean1.htm', msem) res[17,] <- c('Mean Squared Deviation from Median', 'http://www.xycoon.com/median.htm', msemed) load(file='createtable') mylink1 <- hyperlink('http://www.xycoon.com/difference.htm','Interquartile Difference','') mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ') res[18,] <- c('', mylink2, qarr[1,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ') res[19,] <- c('', mylink2, qarr[2,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ') res[20,] <- c('', mylink2, qarr[3,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ') res[21,] <- c('', mylink2, qarr[4,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ') res[22,] <- c('', mylink2, qarr[5,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ') res[23,] <- c('', mylink2, qarr[6,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ') res[24,] <- c('', mylink2, qarr[7,1]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ') res[25,] <- c('', mylink2, qarr[8,1]) mylink1 <- hyperlink('http://www.xycoon.com/deviation.htm','Semi Interquartile Difference','') mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ') res[26,] <- c('', mylink2, qarr[1,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ') res[27,] <- c('', mylink2, qarr[2,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ') res[28,] <- c('', mylink2, qarr[3,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ') res[29,] <- c('', mylink2, qarr[4,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ') res[30,] <- c('', mylink2, qarr[5,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ') res[31,] <- c('', mylink2, qarr[6,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ') res[32,] <- c('', mylink2, qarr[7,2]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ') res[33,] <- c('', mylink2, qarr[8,2]) mylink1 <- hyperlink('http://www.xycoon.com/variation1.htm','Coefficient of Quartile Variation','') mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_1.htm','(Weighted Average at Xnp)',''),sep=' ') res[34,] <- c('', mylink2, qarr[1,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ') res[35,] <- c('', mylink2, qarr[2,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_3.htm','(Empirical Distribution Function)',''),sep=' ') res[36,] <- c('', mylink2, qarr[3,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ') res[37,] <- c('', mylink2, qarr[4,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ') res[38,] <- c('', mylink2, qarr[5,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_6.htm','(Closest Observation)',''),sep=' ') res[39,] <- c('', mylink2, qarr[6,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ') res[40,] <- c('', mylink2, qarr[7,3]) mylink2 <- paste(mylink1,hyperlink('http://www.xycoon.com/method_8.htm','(MS Excel (old versions))',''),sep=' ') res[41,] <- c('', mylink2, qarr[8,3]) res[42,] <- c('Number of all Pairs of Observations', 'http://www.xycoon.com/pair_numbers.htm', lx*(lx-1)/2) res[43,] <- c('Squared Differences between all Pairs of Observations', 'http://www.xycoon.com/squared_differences.htm', sdpo) res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'http://www.xycoon.com/mean_abs_differences.htm', adpo) res[45,] <- c('Gini Mean Difference', 'http://www.xycoon.com/gini_mean_difference.htm', gmd) res[46,] <- c('Leik Measure of Dispersion', 'http://www.xycoon.com/leiks_d.htm', bigd) res[47,] <- c('Index of Diversity', 'http://www.xycoon.com/diversity.htm', iod) res[48,] <- c('Index of Qualitative Variation', 'http://www.xycoon.com/qualitative_variation.htm', iod*lx/(lx-1)) res[49,] <- c('Coefficient of Dispersion', 'http://www.xycoon.com/dispersion.htm', sum(axmm)/lx/medx) res[50,] <- c('Observations', '', lx) res a<-table.start() a<-table.row.start(a) a<-table.element(a,'Variability - Ungrouped Data',2,TRUE) a<-table.row.end(a) for (i in 1:num) { a<-table.row.start(a) if (res[i,1] != '') { a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE) } else { a<-table.element(a,res[i,2],header=TRUE) } a<-table.element(a,res[i,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation