Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
1 1 4 0 2 'T' 0 3 -1 1 4 1 1 0 0 2 'T' 0 -1 -1 1 0 0 1 4 1 1.5 'T' 1 4 1 1.5 5 0 0 0 0 0 'T' 0 0 0 0 0 1 1 0 1 1 'T' 0 -1 0 0 0 1 1 0 1 2 'T' 0 -1 0 1 0 1 1 0 1 2 'T' 0 -1 0 1 0 0 1 0 1 1 'T' 1 0 1 1 1 0 1 4 1 2 'T' 1 4 1 2 5 1 1 1 0 2 'T' 0 0 -1 1 1 0 0 4 0 2 'T' 0 4 0 2 4 0 1 0 1 0 'T' 1 0 1 0 1 0 1 2 1 0 'T' 1 2 1 0 3 0 1 0 0 2 'T' 1 0 0 2 1 0 0 0 NA NA 'T' 0 0 NA NA 0 1 1 0 1 2 'T' 0 -1 0 1 0 1 1 1 0 2 'T' 0 0 -1 1 1 1 1 0 1 0.5 'T' 0 -1 0 -0.5 0 0 1 0 1 2 'T' 1 0 1 2 1 0 0 2 1 0 'T' 0 2 1 0 2 1 1 2 1 2 'T' 0 1 0 1 2 1 1 1 0 0 'T' 0 0 -1 -1 1 0 0 2 NA NA 'T' 0 2 NA NA 2 1 0 0 NA NA 'T' -1 -1 NA NA -1 1 1 3 1 2 'T' 0 2 0 1 3 1 0 0 1 0 'T' -1 -1 0 -1 -1 1 1 0 NA NA 'T' 0 -1 NA NA 0 0 0 0 NA NA 'T' 0 0 NA NA 0 0 0 1 0 2 'T' 0 1 0 2 1 1 1 0 1 1 'T' 0 -1 0 0 0 1 0 0 0 0.5 'T' -1 -1 -1 -0.5 -1 1 1 4 0 2 'T' 0 3 -1 1 4 0 0 0 1 0.5 'T' 0 0 1 0.5 0 0 0 1 NA NA 'T' 0 1 NA NA 1 0 0 0 1 0.5 'T' 0 0 1 0.5 0 1 1 0 NA NA 'T' 0 -1 NA NA 0 1 1 4 0 2 'T' 0 3 -1 1 4 0 1 1 1 0 'E' 1 1 1 0 2 0 1 0 1 1 'E' 1 0 1 1 1 1 1 4 1 2 'E' 0 3 0 1 4 1 1 0 1 1 'E' 0 -1 0 0 0 1 1 4 1 2 'E' 0 3 0 1 4 1 1 0 0 0 'E' 0 -1 -1 -1 0 1 1 0 1 0.5 'E' 0 -1 0 -0.5 0 0 0 0 1 0 'E' 0 0 1 0 0 0 1 4 1 2 'E' 1 4 1 2 5 0 1 0 0 0 'E' 1 0 0 0 1 1 1 0 0 1 'E' 0 -1 -1 0 0 1 1 4 1 2 'E' 0 3 0 1 4 0 0 4 0 0.5 'E' 0 4 0 0.5 4 0 1 0 1 2 'E' 1 0 1 2 1 1 1 1 1 2 'E' 0 0 0 1 1 0 1 0 1 2 'E' 1 0 1 2 1 0 0 4 NA NA 'E' 0 4 NA NA 4 0 1 0 0 0 'E' 1 0 0 0 1 0 1 2 1 0 'E' 1 2 1 0 3 0 1 0 1 0.5 'E' 1 0 1 0.5 1 0 1 4 NA NA 'E' 1 4 NA NA 5 0 0 4 0 2 'E' 0 4 0 2 4 0 0 0 NA NA 'E' 0 0 NA NA 0 0 1 0 1 0 'E' 1 0 1 0 1 1 1 4 1 2 'E' 0 3 0 1 4 1 1 0 1 1 'E' 0 -1 0 0 0 1 0 0 1 0 'E' -1 -1 0 -1 -1 0 0 2 1 2 'E' 0 2 1 2 2 0 1 0 0 1 'E' 1 0 0 1 1 0 1 0 1 2 'E' 1 0 1 2 1 0 0 0 0 0 'E' 0 0 0 0 0 1 1 4 1 1 'E' 0 3 0 0 4 1 1 4 1 2 'E' 0 3 0 1 4 0 1 2 0 0 'S' 1 2 0 0 3 0 1 0 0 0 'S' 1 0 0 0 1 0 1 0 0 0 'S' 1 0 0 0 1 0 1 4 0 0 'S' 1 4 0 0 5 1 1 0 1 2 'S' 0 -1 0 1 0 1 0 0 1 2 'S' -1 -1 0 1 -1 0 0 1 1 2 'S' 0 1 1 2 1 1 1 2 1 2 'S' 0 1 0 1 2 1 0 0 1 2 'S' -1 -1 0 1 -1 1 1 2 1 2 'S' 0 1 0 1 2 0 0 0 1 2 'S' 0 0 1 2 0 0 0 4 1 2 'S' 0 4 1 2 4 0 0 4 1 2 'S' 0 4 1 2 4 1 0 0 1 2 'S' -1 -1 0 1 -1 0 0 0 NA NA 'S' 0 0 NA NA 0 0 0 4 1 2 'S' 0 4 1 2 4 1 0 0 NA NA 'S' -1 -1 NA NA -1 1 1 4 1 2 'S' 0 3 0 1 4 0 0 2 1 2 'S' 0 2 1 2 2 0 0 2 NA NA 'S' 0 2 NA NA 2 1 1 0 0 0 'S' 0 -1 -1 -1 0 1 1 0 1 2 'S' 0 -1 0 1 0 1 1 4 NA NA 'S' 0 3 NA NA 4 0 1 0 1 2 'S' 1 0 1 2 1 1 1 0 1 2 'S' 0 -1 0 1 0 1 1 0 1 2 'S' 0 -1 0 1 0 1 1 4 1 2 'S' 0 3 0 1 4 1 1 4 1 2 'S' 0 3 0 1 4 0 0 0 NA NA 'S' 0 0 NA NA 0 0 0 0 0 0 'S' 0 0 0 0 0 1 1 2 0 0 'S' 0 1 -1 -1 2 0 0 1 1 2 'S' 0 1 1 2 1 0 0 0 0 0 'S' 0 0 0 0 0 0 0 2 1 2 'S' 0 2 1 2 2 0 1 1 0 0 'S' 1 1 0 0 2
Names of X columns:
Pre Post1 Post2 Post3 Post4 treatment Post1-pre Post2-pre post3-pre post4-pre TotPre
Response Variable (column number)
Factor Variable (column number)
Include Intercept Term ?
TRUE
TRUE
FALSE
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
cat1 <- as.numeric(par1) # cat2<- as.numeric(par2) # intercept<-as.logical(par3) x <- t(x) x1<-as.numeric(x[,cat1]) f1<-as.character(x[,cat2]) xdf<-data.frame(x1,f1) (V1<-dimnames(y)[[1]][cat1]) (V2<-dimnames(y)[[1]][cat2]) names(xdf)<-c('Response', 'Treatment') if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) ) (aov.xdf<-aov(lmxdf) ) (anova.xdf<-anova(lmxdf) ) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'means',,TRUE) for(i in 1:length(lmxdf$coefficients)){ a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE) } a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Statistics', 5+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ',,TRUE) a<-table.element(a, 'Df',,FALSE) a<-table.element(a, 'Sum Sq',,FALSE) a<-table.element(a, 'Mean Sq',,FALSE) a<-table.element(a, 'F value',,FALSE) a<-table.element(a, 'Pr(>F)',,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, V2,,TRUE) a<-table.element(a, anova.xdf$Df[1],,FALSE) a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residuals',,TRUE) a<-table.element(a, anova.xdf$Df[2],,FALSE) a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE) a<-table.element(a, ' ',,FALSE) a<-table.element(a, ' ',,FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') bitmap(file='anovaplot.png') boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1) dev.off() if(intercept==TRUE){ 'Tukey Plot' thsd<-TukeyHSD(aov.xdf) bitmap(file='TukeyHSDPlot.png') plot(thsd) dev.off() } if(intercept==TRUE){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ', 1, TRUE) for(i in 1:4){ a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE) } a<-table.row.end(a) for(i in 1:length(rownames(thsd[[1]]))){ a<-table.row.start(a) a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE) for(j in 1:4){ a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') } if(intercept==FALSE){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'TukeyHSD Message', 1,TRUE) a<-table.row.end(a) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab') } library(car) lt.lmxdf<-leveneTest(lmxdf) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ', 1, TRUE) for (i in 1:3){ a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Group', 1, TRUE) for (i in 1:3){ a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ', 1, TRUE) a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE) a<-table.element(a,' ', 1, FALSE) a<-table.element(a,' ', 1, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation