Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Type of Computation
grey
correlation matrix
meta analysis (separate)
meta analysis (overlay)
Variable X
female
ATTLES connected
ATTLES separate
ATTLES all
COLLES actuals
COLLES preferred
COLLES all
CSUQ
Learning Activities
Exam Items
Variable Y
bachelor
ATTLES connected
ATTLES separate
ATTLES all
COLLES actuals
COLLES preferred
COLLES all
CSUQ
Learning Activities
Exam Items
Gender
all
all
female
male
Population
ATTLES separate
all
prep
bachelor
Year
all
0
1
2
3
Chart options
R Code
myxlabs <- 'NA' image.plot <- function (..., add = FALSE, nlevel = 64, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, graphics.reset = FALSE, bigplot = NULL, smallplot = NULL, legend.only = FALSE, col = tim.colors(nlevel), lab.breaks = NULL, axis.args = NULL, legend.args = NULL, midpoint = FALSE) { old.par <- par(no.readonly = TRUE) info <- image.plot.info(...) if (add) { big.plot <- old.par$plt } if (legend.only) { graphics.reset <- TRUE } if (is.null(legend.mar)) { legend.mar <- ifelse(horizontal, 3.1, 5.1) } temp <- image.plot.plt(add = add, legend.shrink = legend.shrink, legend.width = legend.width, legend.mar = legend.mar, horizontal = horizontal, bigplot = bigplot, smallplot = smallplot) smallplot <- temp$smallplot bigplot <- temp$bigplot if (!legend.only) { if (!add) { par(plt = bigplot) } if (!info$poly.grid) { image(..., add = add, col = col) } else { poly.image(..., add = add, col = col, midpoint = midpoint) } big.par <- par(no.readonly = TRUE) } if ((smallplot[2] < smallplot[1]) | (smallplot[4] < smallplot[3])) { par(old.par) stop('plot region too small to add legend ') } ix <- 1 minz <- info$zlim[1] maxz <- info$zlim[2] binwidth <- (maxz - minz)/nlevel midpoints <- seq(minz + binwidth/2, maxz - binwidth/2, by = binwidth) iy <- midpoints iz <- matrix(iy, nrow = 1, ncol = length(iy)) breaks <- list(...)$breaks par(new = TRUE, pty = 'm', plt = smallplot, err = -1) if (is.null(breaks)) { axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2)), axis.args) } else { if (is.null(lab.breaks)) { lab.breaks <- format(breaks) } axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2), at = breaks, labels = lab.breaks), axis.args) } if (!horizontal) { if (is.null(breaks)) { image(ix, iy, iz, xaxt = 'n', yaxt = 'n', xlab = '', ylab = '', col = col) } else { image(ix, iy, iz, xaxt = 'n', yaxt = 'n', xlab = '', ylab = '', col = col, breaks = breaks) } } else { if (is.null(breaks)) { image(iy, ix, t(iz), xaxt = 'n', yaxt = 'n', xlab = '', ylab = '', col = col) } else { image(iy, ix, t(iz), xaxt = 'n', yaxt = 'n', xlab = '', ylab = '', col = col, breaks = breaks) } } box() if (!is.null(legend.lab)) { legend.args <- list(text = legend.lab, side = ifelse(horizontal, 1, 4), line = legend.mar - 2) } if (!is.null(legend.args)) { } mfg.save <- par()$mfg if (graphics.reset | add) { par(old.par) par(mfg = mfg.save, new = FALSE) invisible() } else { par(big.par) par(plt = big.par$plt, xpd = FALSE) par(mfg = mfg.save, new = FALSE) invisible() } } image.plot.plt <- function (x, add = FALSE, legend.shrink = 0.9, legend.width = 1, horizontal = FALSE, legend.mar = NULL, bigplot = NULL, smallplot = NULL, ...) { old.par <- par(no.readonly = TRUE) if (is.null(smallplot)) stick <- TRUE else stick <- FALSE if (is.null(legend.mar)) { legend.mar <- ifelse(horizontal, 3.1, 5.1) } char.size <- ifelse(horizontal, par()$cin[2]/par()$din[2], par()$cin[1]/par()$din[1]) offset <- char.size * ifelse(horizontal, par()$mar[1], par()$mar[4]) legend.width <- char.size * legend.width legend.mar <- legend.mar * char.size if (is.null(smallplot)) { smallplot <- old.par$plt if (horizontal) { smallplot[3] <- legend.mar smallplot[4] <- legend.width + smallplot[3] pr <- (smallplot[2] - smallplot[1]) * ((1 - legend.shrink)/2) smallplot[1] <- smallplot[1] + pr smallplot[2] <- smallplot[2] - pr } else { smallplot[2] <- 1 - legend.mar smallplot[1] <- smallplot[2] - legend.width pr <- (smallplot[4] - smallplot[3]) * ((1 - legend.shrink)/2) smallplot[4] <- smallplot[4] - pr smallplot[3] <- smallplot[3] + pr } } if (is.null(bigplot)) { bigplot <- old.par$plt if (!horizontal) { bigplot[2] <- min(bigplot[2], smallplot[1] - offset) } else { bottom.space <- old.par$mar[1] * char.size bigplot[3] <- smallplot[4] + offset } } if (stick & (!horizontal)) { dp <- smallplot[2] - smallplot[1] smallplot[1] <- min(bigplot[2] + offset, smallplot[1]) smallplot[2] <- smallplot[1] + dp } return(list(smallplot = smallplot, bigplot = bigplot)) } image.plot.info <- function (...) { temp <- list(...) xlim <- NA ylim <- NA zlim <- NA poly.grid <- FALSE if (is.list(temp[[1]])) { xlim <- range(temp[[1]]$x, na.rm = TRUE) ylim <- range(temp[[1]]$y, na.rm = TRUE) zlim <- range(temp[[1]]$z, na.rm = TRUE) if (is.matrix(temp[[1]]$x) & is.matrix(temp[[1]]$y) & is.matrix(temp[[1]]$z)) { poly.grid <- TRUE } } if (length(temp) >= 3) { if (is.matrix(temp[[1]]) & is.matrix(temp[[2]]) & is.matrix(temp[[3]])) { poly.grid <- TRUE } } if (is.matrix(temp[[1]]) & !poly.grid) { xlim <- c(0, 1) ylim <- c(0, 1) zlim <- range(temp[[1]], na.rm = TRUE) } if (length(temp) >= 3) { if (is.matrix(temp[[3]])) { xlim <- range(temp[[1]], na.rm = TRUE) ylim <- range(temp[[2]], na.rm = TRUE) zlim <- range(temp[[3]], na.rm = TRUE) } } if (is.matrix(temp$x) & is.matrix(temp$y) & is.matrix(temp$z)) { poly.grid <- TRUE } xthere <- match('x', names(temp)) ythere <- match('y', names(temp)) zthere <- match('z', names(temp)) if (!is.na(zthere)) zlim <- range(temp$z, na.rm = TRUE) if (!is.na(xthere)) xlim <- range(temp$x, na.rm = TRUE) if (!is.na(ythere)) ylim <- range(temp$y, na.rm = TRUE) if (!is.null(temp$zlim)) zlim <- temp$zlim if (!is.null(temp$xlim)) xlim <- temp$xlim if (!is.null(temp$ylim)) ylim <- temp$ylim list(xlim = xlim, ylim = ylim, zlim = zlim, poly.grid = poly.grid) } matcor <- function (X, Y, method='kendall') { matcorX = cor(X, use = 'pairwise', method=method) matcorY = cor(Y, use = 'pairwise', method=method) matcorXY = cor(cbind(X, Y), use = 'pairwise', method=method) return(list(Xcor = matcorX, Ycor = matcorY, XYcor = matcorXY)) } matcor.p <- function (X, Y, method='kendall') { lx <- length(X[1,]) ly <- length(Y[1,]) myretarr <- array(NA,dim=c(lx,ly)) mymetaarr.x <- array(0,dim=c(lx,10)) mymetaarr.y <- array(0,dim=c(ly,10)) mymetaarr.xp <- array(0,dim=c(lx,10)) mymetaarr.yp <- array(0,dim=c(ly,10)) for (xi in 1:lx) { for (yi in 1:ly) { myretarr[xi,yi] <- cor.test(X[,xi],Y[,yi],method=method)$p.value for (myp in (1:10)) { if (myretarr[xi,yi] < myp/1000) { mymetaarr.x[xi,myp] = mymetaarr.x[xi,myp] + 1 mymetaarr.y[yi,myp] = mymetaarr.y[yi,myp] + 1 } } } } mymetaarr.xp = mymetaarr.x / ly mymetaarr.yp = mymetaarr.y / lx return(list(XYcor = myretarr, Xmeta = mymetaarr.x, Ymeta = mymetaarr.y, Xmetap = mymetaarr.xp, Ymetap = mymetaarr.yp)) } tim.colors <- function (n = 64) { orig <- c('#00008F', '#00009F', '#0000AF', '#0000BF', '#0000CF', '#0000DF', '#0000EF', '#0000FF', '#0010FF', '#0020FF', '#0030FF', '#0040FF', '#0050FF', '#0060FF', '#0070FF', '#0080FF', '#008FFF', '#009FFF', '#00AFFF', '#00BFFF', '#00CFFF', '#00DFFF', '#00EFFF', '#00FFFF', '#10FFEF', '#20FFDF', '#30FFCF', '#40FFBF', '#50FFAF', '#60FF9F', '#70FF8F', '#80FF80', '#8FFF70', '#9FFF60', '#AFFF50', '#BFFF40', '#CFFF30', '#DFFF20', '#EFFF10', '#FFFFFF', '#FFEF00', '#FFDF00', '#FFCF00', '#FFBF00', '#FFAF00', '#FF9F00', '#FF8F00', '#FF8000', '#FF7000', '#FF6000', '#FF5000', '#FF4000', '#FF3000', '#FF2000', '#FF1000', '#FF0000', '#EF0000', '#DF0000', '#CF0000', '#BF0000', '#AF0000', '#9F0000', '#8F0000', '#800000') if (n == 64) return(orig) rgb.tim <- t(col2rgb(orig)) temp <- matrix(NA, ncol = 3, nrow = n) x <- seq(0, 1, , 64) xg <- seq(0, 1, , n) for (k in 1:3) { hold <- splint(x, rgb.tim[, k], xg) hold[hold < 0] <- 0 hold[hold > 255] <- 255 temp[, k] <- round(hold) } rgb(temp[, 1], temp[, 2], temp[, 3], maxColorValue = 255) } img.matcor <- function (correl, title='XY correlation') { matcorX = correl$Xcor matcorY = correl$Ycor matcorXY = correl$XYcor lX = ncol(matcorX) lY = ncol(matcorY) def.par <- par(no.readonly = TRUE) par(mfrow = c(1, 1), pty = 's') image(1:(lX + lY), 1:(lX + lY), t(matcorXY[nrow(matcorXY):1,]), zlim = c(-1, 1), main = title, col = tim.colors(64), axes = FALSE, , xlab = '', ylab = '') box() abline(h = lY + 0.5, v = lX + 0.5, lwd = 2, lty = 2) image.plot(legend.only = TRUE, zlim = c(-1, 1), col = tim.colors(64), horizontal = TRUE) par(def.par) } x <- as.data.frame(read.table(file='http://www.wessa.net/download/utaut.csv',sep=',',header=T)) x$U25 <- 6-x$U25 if(par4 == 'female') x <- x[x$Gender==0,] if(par4 == 'male') x <- x[x$Gender==1,] if(par5 == 'prep') x <- x[x$Pop==1,] if(par5 == 'bachelor') x <- x[x$Pop==0,] if(par6 != 'all') { x <- x[x$Year==as.numeric(par6),] } cAc <- with(x,cbind( A1, A2, A3, A4, A5, A6, A7, A8, A9,A10)) cAs <- with(x,cbind(A11,A12,A13,A14,A15,A16,A17,A18,A19,A20)) cA <- cbind(cAc,cAs) cCa <- with(x,cbind(C1,C3,C5,C7, C9,C11,C13,C15,C17,C19,C21,C23,C25,C27,C29,C31,C33,C35,C37,C39,C41,C43,C45,C47)) cCp <- with(x,cbind(C2,C4,C6,C8,C10,C12,C14,C16,C18,C20,C22,C24,C26,C28,C30,C32,C34,C36,C38,C40,C42,C44,C46,C48)) cC <- cbind(cCa,cCp) cU <- with(x,cbind(U1,U2,U3,U4,U5,U6,U7,U8,U9,U10,U11,U12,U13,U14,U15,U16,U17,U18,U19,U20,U21,U22,U23,U24,U25,U26,U27,U28,U29,U30,U31,U32,U33)) cE <- with(x,cbind(BC,NNZFG,MRT,AFL,LPM,LPC,W,WPA)) cX <- with(x,cbind(X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16,X17,X18)) if (par2=='ATTLES connected') myX <- cAc if (par3=='ATTLES connected') myY <- cAc if (par2=='ATTLES separate') myX <- cAs if (par3=='ATTLES separate') myY <- cAs if (par2=='ATTLES all') myX <- cA if (par3=='ATTLES all') myY <- cA if (par2=='COLLES actuals') myX <- cCa if (par3=='COLLES actuals') myY <- cCa if (par2=='COLLES preferred') myX <- cCp if (par3=='COLLES preferred') myY <- cCp if (par2=='COLLES all') myX <- cC if (par3=='COLLES all') myY <- cC if (par2=='CSUQ') myX <- cU if (par3=='CSUQ') myY <- cU if (par2=='Learning Activities') myX <- cE if (par3=='Learning Activities') myY <- cE if (par2=='Exam Items') myX <- cX if (par3=='Exam Items') myY <- cX bitmap(file='pic1.png') if (par1=='correlation matrix') { correl <- with(x,matcor(myX,myY)) myoutput <- correl myxlabs <- colnames(myX) myylabs <- colnames(myY) img.matcor(correl, title=paste(par2,' and ',par3,sep='')) dev.off() } if (par1=='meta analysis (separate)') { myl <- length(myY[1,]) nr <- round(sqrt(myl)) nc <- nr if (nr*nr < myl) nc = nc +1 r <- matcor.p(myX,myY) myoutput <- r$Ymetap myylabs <- colnames(myY) op <- par(mfrow=c(nr,nc)) for (i in 1:myl) { plot((1:10)/1000,r$Ymetap[i,],xlab='type I error',ylab='#sign./#corr.',main=colnames(myY)[i], type='b',ylim=c(0,max(r$Ymetap[i,]))) abline(0,1) grid() } par(op) dev.off() } if (par1=='meta analysis (overlay)') { myl <- length(myY[1,]) r <- matcor.p(myX,myY) myoutput <- r$Ymetap myylabs <- colnames(myY) plot((1:10)/1000,r$Ymetap[1,], xlab='type I error', ylab='#sign./#corr.', main=par3, type='b', ylim=c(0,max(r$Ymetap)), xlim=c(0.001,0.01+ (myl+1)*0.0002)) abline(0,1) grid() for (i in 2:myl) { lines((1:10)/1000,r$Ymetap[i,],type='b',lty=i) } for (i in 1:myl) text(0.0105+0.0002*i, r$Ymetap[i,10], labels = colnames(myY)[i], cex=0.7) dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Computational Result',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('myoutput; myxlabs; myylabs'),'</pre>',sep='')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation