Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
227.81 227.81 227.01 227.26 227.1 227.59 227.59 227.7 227.75 226.33 225.95 226.33 226.33 226.22 224.84 221.88 222.37 221.8 221.8 221.8 221.9 220.2 219.95 220.05 220.05 220.05 220.62 221.53 221.61 221.5 221.5 221.87 222.27 220.86 221.49 221.67 221.67 221.72 221.67 220.29 220.75 219.59 219.59 219.59 219.82 221.59 220.9 221.01 221.01 219.69 221 219.82 218.04 217.97 217.97 217.53 217 217.18 217.68 217.71
Type of Seasonality
additive
additive
multiplicative
Seasonal Period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
par2 <- as.numeric(par2) x <- ts(x,freq=par2) m <- decompose(x,type=par1) m$figure bitmap(file='test1.png') plot(m) dev.off() mylagmax <- length(x)/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend') acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend') spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal') spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend') cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal') cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observations',header=TRUE) a<-table.element(a,'Fit',header=TRUE) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Random',header=TRUE) a<-table.row.end(a) for (i in 1:length(m$trend)) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) if (par1 == 'additive') a<-table.element(a,m$trend[i]+m$seasonal[i]) else a<-table.element(a,m$trend[i]*m$seasonal[i]) a<-table.element(a,m$trend[i]) a<-table.element(a,m$seasonal[i]) a<-table.element(a,m$random[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation