Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
1 1 1 41 41 38 38 13 12 12 14 14 12 12 53 53 1 2 2 39 39 32 32 16 11 11 18 18 11 11 83 83 1 3 3 30 30 35 35 19 15 15 11 11 14 14 66 66 1 4 4 31 31 33 33 15 6 6 12 12 12 12 67 67 1 5 5 34 34 37 37 14 13 13 16 16 21 21 76 76 1 6 6 35 35 29 29 13 10 10 18 18 12 12 78 78 1 7 7 39 39 31 31 19 12 12 14 14 22 22 53 53 1 8 8 34 34 36 36 15 14 14 14 14 11 11 80 80 1 9 9 36 36 35 35 14 12 12 15 15 10 10 74 74 1 10 10 37 37 38 38 15 9 9 15 15 13 13 76 76 1 11 11 38 38 31 31 16 10 10 17 17 10 10 79 79 1 12 12 36 36 34 34 16 12 12 19 19 8 8 54 54 1 13 13 38 38 35 35 16 12 12 10 10 15 15 67 67 1 14 14 39 39 38 38 16 11 11 16 16 14 14 54 54 1 15 15 33 33 37 37 17 15 15 18 18 10 10 87 87 1 16 16 32 32 33 33 15 12 12 14 14 14 14 58 58 1 17 17 36 36 32 32 15 10 10 14 14 14 14 75 75 1 18 18 38 38 38 38 20 12 12 17 17 11 11 88 88 1 19 19 39 39 38 38 18 11 11 14 14 10 10 64 64 1 20 20 32 32 32 32 16 12 12 16 16 13 13 57 57 1 21 21 32 32 33 33 16 11 11 18 18 9.5 9.5 66 66 1 22 22 31 31 31 31 16 12 12 11 11 14 14 68 68 1 23 23 39 39 38 38 19 13 13 14 14 12 12 54 54 1 24 24 37 37 39 39 16 11 11 12 12 14 14 56 56 1 25 25 39 39 32 32 17 12 12 17 17 11 11 86 86 1 26 26 41 41 32 32 17 13 13 9 9 9 9 80 80 1 27 27 36 36 35 35 16 10 10 16 16 11 11 76 76 1 28 28 33 33 37 37 15 14 14 14 14 15 15 69 69 1 29 29 33 33 33 33 16 12 12 15 15 14 14 78 78 1 30 30 34 34 33 33 14 10 10 11 11 13 13 67 67 1 31 31 31 31 31 31 15 12 12 16 16 9 9 80 80 1 32 32 27 27 32 32 12 8 8 13 13 15 15 54 54 1 33 33 37 37 31 31 14 10 10 17 17 10 10 71 71 1 34 34 34 34 37 37 16 12 12 15 15 11 11 84 84 1 35 35 34 34 30 30 14 12 12 14 14 13 13 74 74 1 36 36 32 32 33 33 10 7 7 16 16 8 8 71 71 1 37 37 29 29 31 31 10 9 9 9 9 20 20 63 63 1 38 38 36 36 33 33 14 12 12 15 15 12 12 71 71 1 39 39 29 29 31 31 16 10 10 17 17 10 10 76 76 1 40 40 35 35 33 33 16 10 10 13 13 10 10 69 69 1 41 41 37 37 32 32 16 10 10 15 15 9 9 74 74 1 42 42 34 34 33 33 14 12 12 16 16 14 14 75 75 1 43 43 38 38 32 32 20 15 15 16 16 8 8 54 54 1 44 44 35 35 33 33 14 10 10 12 12 14 14 52 52 1 45 45 38 38 28 28 14 10 10 15 15 11 11 69 69 1 46 46 37 37 35 35 11 12 12 11 11 13 13 68 68 1 47 47 38 38 39 39 14 13 13 15 15 9 9 65 65 1 48 48 33 33 34 34 15 11 11 15 15 11 11 75 75 1 49 49 36 36 38 38 16 11 11 17 17 15 15 74 74 1 50 50 38 38 32 32 14 12 12 13 13 11 11 75 75 1 51 51 32 32 38 38 16 14 14 16 16 10 10 72 72 1 52 52 32 32 30 30 14 10 10 14 14 14 14 67 67 1 53 53 32 32 33 33 12 12 12 11 11 18 18 63 63 1 54 54 34 34 38 38 16 13 13 12 12 14 14 62 62 1 55 55 32 32 32 32 9 5 5 12 12 11 11 63 63 1 56 56 37 37 35 35 14 6 6 15 15 14.5 14.5 76 76 1 57 57 39 39 34 34 16 12 12 16 16 13 13 74 74 1 58 58 29 29 34 34 16 12 12 15 15 9 9 67 67 1 59 59 37 37 36 36 15 11 11 12 12 10 10 73 73 1 60 60 35 35 34 34 16 10 10 12 12 15 15 70 70 1 61 61 30 30 28 28 12 7 7 8 8 20 20 53 53 1 62 62 38 38 34 34 16 12 12 13 13 12 12 77 77 1 63 63 34 34 35 35 16 14 14 11 11 12 12 80 80 1 64 64 31 31 35 35 14 11 11 14 14 14 14 52 52 1 65 65 34 34 31 31 16 12 12 15 15 13 13 54 54 1 66 66 35 35 37 37 17 13 13 10 10 11 11 80 80 1 67 67 36 36 35 35 18 14 14 11 11 17 17 66 66 1 68 68 30 30 27 27 18 11 11 12 12 12 12 73 73 1 69 69 39 39 40 40 12 12 12 15 15 13 13 63 63 1 70 70 35 35 37 37 16 12 12 15 15 14 14 69 69 1 71 71 38 38 36 36 10 8 8 14 14 13 13 67 67 1 72 72 31 31 38 38 14 11 11 16 16 15 15 54 54 1 73 73 34 34 39 39 18 14 14 15 15 13 13 81 81 1 74 74 38 38 41 41 18 14 14 15 15 10 10 69 69 1 75 75 34 34 27 27 16 12 12 13 13 11 11 84 84 1 76 76 39 39 30 30 17 9 9 12 12 19 19 80 80 1 77 77 37 37 37 37 16 13 13 17 17 13 13 70 70 1 78 78 34 34 31 31 16 11 11 13 13 17 17 69 69 1 79 79 28 28 31 31 13 12 12 15 15 13 13 77 77 1 80 80 37 37 27 27 16 12 12 13 13 9 9 54 54 1 81 81 33 33 36 36 16 12 12 15 15 11 11 79 79 1 82 82 35 35 37 37 16 12 12 15 15 9 9 71 71 1 83 83 37 37 33 33 15 12 12 16 16 12 12 73 73 1 84 84 32 32 34 34 15 11 11 15 15 12 12 72 72 1 85 85 33 33 31 31 16 10 10 14 14 13 13 77 77 1 86 86 38 38 39 39 14 9 9 15 15 13 13 75 75 1 87 87 33 33 34 34 16 12 12 14 14 12 12 69 69 1 88 88 29 29 32 32 16 12 12 13 13 15 15 54 54 1 89 89 33 33 33 33 15 12 12 7 7 22 22 70 70 1 90 90 31 31 36 36 12 9 9 17 17 13 13 73 73 1 91 91 36 36 32 32 17 15 15 13 13 15 15 54 54 1 92 92 35 35 41 41 16 12 12 15 15 13 13 77 77 1 93 93 32 32 28 28 15 12 12 14 14 15 15 82 82 1 94 94 29 29 30 30 13 12 12 13 13 12.5 12.5 80 80 1 95 95 39 39 36 36 16 10 10 16 16 11 11 80 80 1 96 96 37 37 35 35 16 13 13 12 12 16 16 69 69 1 97 97 35 35 31 31 16 9 9 14 14 11 11 78 78 1 98 98 37 37 34 34 16 12 12 17 17 11 11 81 81 1 99 99 32 32 36 36 14 10 10 15 15 10 10 76 76 1 100 100 38 38 36 36 16 14 14 17 17 10 10 76 76 1 101 101 37 37 35 35 16 11 11 12 12 16 16 73 73 1 102 102 36 36 37 37 20 15 15 16 16 12 12 85 85 1 103 103 32 32 28 28 15 11 11 11 11 11 11 66 66 1 104 104 33 33 39 39 16 11 11 15 15 16 16 79 79 1 105 105 40 40 32 32 13 12 12 9 9 19 19 68 68 1 106 106 38 38 35 35 17 12 12 16 16 11 11 76 76 1 107 107 41 41 39 39 16 12 12 15 15 16 16 71 71 1 108 108 36 36 35 35 16 11 11 10 10 15 15 54 54 1 109 109 43 43 42 42 12 7 7 10 10 24 24 46 46 1 110 110 30 30 34 34 16 12 12 15 15 14 14 85 85 1 111 111 31 31 33 33 16 14 14 11 11 15 15 74 74 1 112 112 32 32 41 41 17 11 11 13 13 11 11 88 88 1 113 113 32 32 33 33 13 11 11 14 14 15 15 38 38 1 114 114 37 37 34 34 12 10 10 18 18 12 12 76 76 1 115 115 37 37 32 32 18 13 13 16 16 10 10 86 86 1 116 116 33 33 40 40 14 13 13 14 14 14 14 54 54 1 117 117 34 34 40 40 14 8 8 14 14 13 13 67 67 1 118 118 33 33 35 35 13 11 11 14 14 9 9 69 69 1 119 119 38 38 36 36 16 12 12 14 14 15 15 90 90 1 120 120 33 33 37 37 13 11 11 12 12 15 15 54 54 1 121 121 31 31 27 27 16 13 13 14 14 14 14 76 76 1 122 122 38 38 39 39 13 12 12 15 15 11 11 89 89 1 123 123 37 37 38 38 16 14 14 15 15 8 8 76 76 1 124 124 36 36 31 31 15 13 13 15 15 11 11 73 73 1 125 125 31 31 33 33 16 15 15 13 13 11 11 79 79 1 126 126 39 39 32 32 15 10 10 17 17 8 8 90 90 1 127 127 44 44 39 39 17 11 11 17 17 10 10 74 74 1 128 128 33 33 36 36 15 9 9 19 19 11 11 81 81 1 129 129 35 35 33 33 12 11 11 15 15 13 13 72 72 1 130 130 32 32 33 33 16 10 10 13 13 11 11 71 71 1 131 131 28 28 32 32 10 11 11 9 9 20 20 66 66 1 132 132 40 40 37 37 16 8 8 15 15 10 10 77 77 1 133 133 27 27 30 30 12 11 11 15 15 15 15 65 65 1 134 134 37 37 38 38 14 12 12 15 15 12 12 74 74 1 135 135 32 32 29 29 15 12 12 16 16 14 14 85 85 1 136 136 28 28 22 22 13 9 9 11 11 23 23 54 54 1 137 137 34 34 35 35 15 11 11 14 14 14 14 63 63 1 138 138 30 30 35 35 11 10 10 11 11 16 16 54 54 1 139 139 35 35 34 34 12 8 8 15 15 11 11 64 64 1 140 140 31 31 35 35 11 9 9 13 13 12 12 69 69 1 141 141 32 32 34 34 16 8 8 15 15 10 10 54 54 1 142 142 30 30 37 37 15 9 9 16 16 14 14 84 84 1 143 143 30 30 35 35 17 15 15 14 14 12 12 86 86 1 144 144 31 31 23 23 16 11 11 15 15 12 12 77 77 1 145 145 40 40 31 31 10 8 8 16 16 11 11 89 89 1 146 146 32 32 27 27 18 13 13 16 16 12 12 76 76 1 147 147 36 36 36 36 13 12 12 11 11 13 13 60 60 1 148 148 32 32 31 31 16 12 12 12 12 11 11 75 75 1 149 149 35 35 32 32 13 9 9 9 9 19 19 73 73 1 150 150 38 38 39 39 10 7 7 16 16 12 12 85 85 1 151 151 42 42 37 37 15 13 13 13 13 17 17 79 79 1 152 152 34 34 38 38 16 9 9 16 16 9 9 71 71 1 153 153 35 35 39 39 16 6 6 12 12 12 12 72 72 1 154 154 38 38 34 34 14 8 8 9 9 19 19 69 69 1 155 155 33 33 31 31 10 8 8 13 13 18 18 78 78 1 156 156 36 36 32 32 17 15 15 13 13 15 15 54 54 1 157 157 32 32 37 37 13 6 6 14 14 14 14 69 69 1 158 158 33 33 36 36 15 9 9 19 19 11 11 81 81 1 159 159 34 34 32 32 16 11 11 13 13 9 9 84 84 1 160 160 32 32 38 38 12 8 8 12 12 18 18 84 84 1 161 161 34 34 36 36 13 8 8 13 13 16 16 69 69 0 162 0 27 0 26 0 13 10 0 10 0 24 0 66 0 0 163 0 31 0 26 0 12 8 0 14 0 14 0 81 0 0 164 0 38 0 33 0 17 14 0 16 0 20 0 82 0 0 165 0 34 0 39 0 15 10 0 10 0 18 0 72 0 0 166 0 24 0 30 0 10 8 0 11 0 23 0 54 0 0 167 0 30 0 33 0 14 11 0 14 0 12 0 78 0 0 168 0 26 0 25 0 11 12 0 12 0 14 0 74 0 0 169 0 34 0 38 0 13 12 0 9 0 16 0 82 0 0 170 0 27 0 37 0 16 12 0 9 0 18 0 73 0 0 171 0 37 0 31 0 12 5 0 11 0 20 0 55 0 0 172 0 36 0 37 0 16 12 0 16 0 12 0 72 0 0 173 0 41 0 35 0 12 10 0 9 0 12 0 78 0 0 174 0 29 0 25 0 9 7 0 13 0 17 0 59 0 0 175 0 36 0 28 0 12 12 0 16 0 13 0 72 0 0 176 0 32 0 35 0 15 11 0 13 0 9 0 78 0 0 177 0 37 0 33 0 12 8 0 9 0 16 0 68 0 0 178 0 30 0 30 0 12 9 0 12 0 18 0 69 0 0 179 0 31 0 31 0 14 10 0 16 0 10 0 67 0 0 180 0 38 0 37 0 12 9 0 11 0 14 0 74 0 0 181 0 36 0 36 0 16 12 0 14 0 11 0 54 0 0 182 0 35 0 30 0 11 6 0 13 0 9 0 67 0 0 183 0 31 0 36 0 19 15 0 15 0 11 0 70 0 0 184 0 38 0 32 0 15 12 0 14 0 10 0 80 0 0 185 0 22 0 28 0 8 12 0 16 0 11 0 89 0 0 186 0 32 0 36 0 16 12 0 13 0 19 0 76 0 0 187 0 36 0 34 0 17 11 0 14 0 14 0 74 0 0 188 0 39 0 31 0 12 7 0 15 0 12 0 87 0 0 189 0 28 0 28 0 11 7 0 13 0 14 0 54 0 0 190 0 32 0 36 0 11 5 0 11 0 21 0 61 0 0 191 0 32 0 36 0 14 12 0 11 0 13 0 38 0 0 192 0 38 0 40 0 16 12 0 14 0 10 0 75 0 0 193 0 32 0 33 0 12 3 0 15 0 15 0 69 0 0 194 0 35 0 37 0 16 11 0 11 0 16 0 62 0 0 195 0 32 0 32 0 13 10 0 15 0 14 0 72 0 0 196 0 37 0 38 0 15 12 0 12 0 12 0 70 0 0 197 0 34 0 31 0 16 9 0 14 0 19 0 79 0 0 198 0 33 0 37 0 16 12 0 14 0 15 0 87 0 0 199 0 33 0 33 0 14 9 0 8 0 19 0 62 0 0 200 0 26 0 32 0 16 12 0 13 0 13 0 77 0 0 201 0 30 0 30 0 16 12 0 9 0 17 0 69 0 0 202 0 24 0 30 0 14 10 0 15 0 12 0 69 0 0 203 0 34 0 31 0 11 9 0 17 0 11 0 75 0 0 204 0 34 0 32 0 12 12 0 13 0 14 0 54 0 0 205 0 33 0 34 0 15 8 0 15 0 11 0 72 0 0 206 0 34 0 36 0 15 11 0 15 0 13 0 74 0 0 207 0 35 0 37 0 16 11 0 14 0 12 0 85 0 0 208 0 35 0 36 0 16 12 0 16 0 15 0 52 0 0 209 0 36 0 33 0 11 10 0 13 0 14 0 70 0 0 210 0 34 0 33 0 15 10 0 16 0 12 0 84 0 0 211 0 34 0 33 0 12 12 0 9 0 17 0 64 0 0 212 0 41 0 44 0 12 12 0 16 0 11 0 84 0 0 213 0 32 0 39 0 15 11 0 11 0 18 0 87 0 0 214 0 30 0 32 0 15 8 0 10 0 13 0 79 0 0 215 0 35 0 35 0 16 12 0 11 0 17 0 67 0 0 216 0 28 0 25 0 14 10 0 15 0 13 0 65 0 0 217 0 33 0 35 0 17 11 0 17 0 11 0 85 0 0 218 0 39 0 34 0 14 10 0 14 0 12 0 83 0 0 219 0 36 0 35 0 13 8 0 8 0 22 0 61 0 0 220 0 36 0 39 0 15 12 0 15 0 14 0 82 0 0 221 0 35 0 33 0 13 12 0 11 0 12 0 76 0 0 222 0 38 0 36 0 14 10 0 16 0 12 0 58 0 0 223 0 33 0 32 0 15 12 0 10 0 17 0 72 0 0 224 0 31 0 32 0 12 9 0 15 0 9 0 72 0 0 225 0 34 0 36 0 13 9 0 9 0 21 0 38 0 0 226 0 32 0 36 0 8 6 0 16 0 10 0 78 0 0 227 0 31 0 32 0 14 10 0 19 0 11 0 54 0 0 228 0 33 0 34 0 14 9 0 12 0 12 0 63 0 0 229 0 34 0 33 0 11 9 0 8 0 23 0 66 0 0 230 0 34 0 35 0 12 9 0 11 0 13 0 70 0 0 231 0 34 0 30 0 13 6 0 14 0 12 0 71 0 0 232 0 33 0 38 0 10 10 0 9 0 16 0 67 0 0 233 0 32 0 34 0 16 6 0 15 0 9 0 58 0 0 234 0 41 0 33 0 18 14 0 13 0 17 0 72 0 0 235 0 34 0 32 0 13 10 0 16 0 9 0 72 0 0 236 0 36 0 31 0 11 10 0 11 0 14 0 70 0 0 237 0 37 0 30 0 4 6 0 12 0 17 0 76 0 0 238 0 36 0 27 0 13 12 0 13 0 13 0 50 0 0 239 0 29 0 31 0 16 12 0 10 0 11 0 72 0 0 240 0 37 0 30 0 10 7 0 11 0 12 0 72 0 0 241 0 27 0 32 0 12 8 0 12 0 10 0 88 0 0 242 0 35 0 35 0 12 11 0 8 0 19 0 53 0 0 243 0 28 0 28 0 10 3 0 12 0 16 0 58 0 0 244 0 35 0 33 0 13 6 0 12 0 16 0 66 0 0 245 0 37 0 31 0 15 10 0 15 0 14 0 82 0 0 246 0 29 0 35 0 12 8 0 11 0 20 0 69 0 0 247 0 32 0 35 0 14 9 0 13 0 15 0 68 0 0 248 0 36 0 32 0 10 9 0 14 0 23 0 44 0 0 249 0 19 0 21 0 12 8 0 10 0 20 0 56 0 0 250 0 21 0 20 0 12 9 0 12 0 16 0 53 0 0 251 0 31 0 34 0 11 7 0 15 0 14 0 70 0 0 252 0 33 0 32 0 10 7 0 13 0 17 0 78 0 0 253 0 36 0 34 0 12 6 0 13 0 11 0 71 0 0 254 0 33 0 32 0 16 9 0 13 0 13 0 72 0 0 255 0 37 0 33 0 12 10 0 12 0 17 0 68 0 0 256 0 34 0 33 0 14 11 0 12 0 15 0 67 0 0 257 0 35 0 37 0 16 12 0 9 0 21 0 75 0 0 258 0 31 0 32 0 14 8 0 9 0 18 0 62 0 0 259 0 37 0 34 0 13 11 0 15 0 15 0 67 0 0 260 0 35 0 30 0 4 3 0 10 0 8 0 83 0 0 261 0 27 0 30 0 15 11 0 14 0 12 0 64 0 0 262 0 34 0 38 0 11 12 0 15 0 12 0 68 0 0 263 0 40 0 36 0 11 7 0 7 0 22 0 62 0 0 264 0 29 0 32 0 14 9 0 14 0 12 0 72 0
Names of X columns:
Pop t Pop_t Connected Connected_p Separate Separate_p Learning Software Software_p Happiness Happiness_p Depression Depression_p Belonging Belonging_p
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series
(?)
Fixed Seasonal Effects
Do not include Seasonal Dummies
Do not include Seasonal Dummies
Include Seasonal Dummies
Type of Equation
No Linear Trend
No Linear Trend
Linear Trend
First Differences
Seasonal Differences (s)
First and Seasonal Differences (s)
Degree of Predetermination (lagged endogenous variables)
Degree of Seasonal Predetermination
Seasonality
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
library(lattice) library(lmtest) n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test par1 <- as.numeric(par1) x <- t(y) k <- length(x[1,]) n <- length(x[,1]) x1 <- cbind(x[,par1], x[,1:k!=par1]) mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) colnames(x1) <- mycolnames #colnames(x)[par1] x <- x1 if (par3 == 'First Differences'){ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) for (i in 1:n-1) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 } if (par2 == 'Include Monthly Dummies'){ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) for (i in 1:11){ x2[seq(i,n,12),i] <- 1 } x <- cbind(x, x2) } if (par2 == 'Include Quarterly Dummies'){ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) for (i in 1:3){ x2[seq(i,n,4),i] <- 1 } x <- cbind(x, x2) } k <- length(x[1,]) if (par3 == 'Linear Trend'){ x <- cbind(x, c(1:n)) colnames(x)[k+1] <- 't' } x k <- length(x[1,]) df <- as.data.frame(x) (mylm <- lm(df)) (mysum <- summary(mylm)) if (n > n25) { kp3 <- k + 3 nmkm3 <- n - k - 3 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) numgqtests <- 0 numsignificant1 <- 0 numsignificant5 <- 0 numsignificant10 <- 0 for (mypoint in kp3:nmkm3) { j <- 0 numgqtests <- numgqtests + 1 for (myalt in c('greater', 'two.sided', 'less')) { j <- j + 1 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value } if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 } gqarr } bitmap(file='test0.png') plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') points(x[,1]-mysum$resid) grid() dev.off() bitmap(file='test1.png') plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') grid() dev.off() bitmap(file='test2.png') hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') grid() dev.off() bitmap(file='test3.png') densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test4.png') qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') qqline(mysum$resid) grid() dev.off() (myerror <- as.ts(mysum$resid)) bitmap(file='test5.png') dum <- cbind(lag(myerror,k=1),myerror) dum dum1 <- dum[2:length(myerror),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') lines(lowess(z)) abline(lm(z)) grid() dev.off() bitmap(file='test6.png') acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') grid() dev.off() bitmap(file='test7.png') pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') grid() dev.off() bitmap(file='test8.png') opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(mylm, las = 1, sub='Residual Diagnostics') par(opar) dev.off() if (n > n25) { bitmap(file='test9.png') plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') grid() dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) a<-table.row.end(a) myeq <- colnames(x)[1] myeq <- paste(myeq, '[t] = ', sep='') for (i in 1:k){ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ') if (rownames(mysum$coefficients)[i] != '(Intercept)') { myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') } } myeq <- paste(myeq, ' + e[t]') a<-table.row.start(a) a<-table.element(a, myeq) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Variable',header=TRUE) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE) a<-table.element(a,'2-tail p-value',header=TRUE) a<-table.element(a,'1-tail p-value',header=TRUE) a<-table.row.end(a) for (i in 1:k){ a<-table.row.start(a) a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) a<-table.element(a,mysum$coefficients[i,1]) a<-table.element(a, round(mysum$coefficients[i,2],6)) a<-table.element(a, round(mysum$coefficients[i,3],4)) a<-table.element(a, round(mysum$coefficients[i,4],6)) a<-table.element(a, round(mysum$coefficients[i,4]/2,6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R',1,TRUE) a<-table.element(a, sqrt(mysum$r.squared)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'R-squared',1,TRUE) a<-table.element(a, mysum$r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-squared',1,TRUE) a<-table.element(a, mysum$adj.r.squared) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (value)',1,TRUE) a<-table.element(a, mysum$fstatistic[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) a<-table.element(a, mysum$fstatistic[2]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) a<-table.element(a, mysum$fstatistic[3]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'p-value',1,TRUE) a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3])) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Standard Deviation',1,TRUE) a<-table.element(a, mysum$sigma) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Sum Squared Residuals',1,TRUE) a<-table.element(a, sum(myerror*myerror)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Time or Index', 1, TRUE) a<-table.element(a, 'Actuals', 1, TRUE) a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE) a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,i, 1, TRUE) a<-table.element(a,x[i]) a<-table.element(a,x[i]-mysum$resid[i]) a<-table.element(a,mysum$resid[i]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab') if (n > n25) { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-values',header=TRUE) a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'breakpoint index',header=TRUE) a<-table.element(a,'greater',header=TRUE) a<-table.element(a,'2-sided',header=TRUE) a<-table.element(a,'less',header=TRUE) a<-table.row.end(a) for (mypoint in kp3:nmkm3) { a<-table.row.start(a) a<-table.element(a,mypoint,header=TRUE) a<-table.element(a,gqarr[mypoint-kp3+1,1]) a<-table.element(a,gqarr[mypoint-kp3+1,2]) a<-table.element(a,gqarr[mypoint-kp3+1,3]) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable5.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Description',header=TRUE) a<-table.element(a,'# significant tests',header=TRUE) a<-table.element(a,'% significant tests',header=TRUE) a<-table.element(a,'OK/NOK',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'1% type I error level',header=TRUE) a<-table.element(a,numsignificant1) a<-table.element(a,numsignificant1/numgqtests) if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'5% type I error level',header=TRUE) a<-table.element(a,numsignificant5) a<-table.element(a,numsignificant5/numgqtests) if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'10% type I error level',header=TRUE) a<-table.element(a,numsignificant10) a<-table.element(a,numsignificant10/numgqtests) if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable6.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation