Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
37 30 47 35 30 43 82 40 47 19 52 136 80 42 54 66 81 63 137 72 107 58 36 52 79 77 54 84 48 96 83 66 61 53 30 74 69 59 42 65 70 100 63 105 82 81 75 102 121 98 76 77 63 37 35 23 40 29 37 51 20 28 13 22 25 13 16 13 16 17 9 17 25 14 8 7 10 7 10 3
Seasonal period
12
12
1
2
3
4
5
6
7
8
9
10
11
12
Seasonal window
(?)
Seasonal degree
(?)
0
0
1
Trend window
(?)
Trend degree
(?)
1
1
0
Low-pass window
(?)
Low-pass degree
(?)
1
1
0
Robust loess fitting
FALSE
FALSE
TRUE
Chart options
Title:
R Code
par1 <- as.numeric(par1) #seasonal period if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window par3 <- as.numeric(par3) #s.degree if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window par5 <- as.numeric(par5)#t.degree if (par6 != '') par6 <- as.numeric(par6)#l.window par7 <- as.numeric(par7)#l.degree if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust nx <- length(x) x <- ts(x,frequency=par1) if (par6 != '') { m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8) } else { m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8) } m$time.series m$win m$deg m$jump m$inner m$outer bitmap(file='test1.png') plot(m,main=main) dev.off() mylagmax <- nx/2 bitmap(file='test2.png') op <- par(mfrow = c(2,2)) acf(as.numeric(x),lag.max = mylagmax,main='Observed') acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend') acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal') acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder') par(op) dev.off() bitmap(file='test3.png') op <- par(mfrow = c(2,2)) spectrum(as.numeric(x),main='Observed') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal') spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder') par(op) dev.off() bitmap(file='test4.png') op <- par(mfrow = c(2,2)) cpgram(as.numeric(x),main='Observed') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal') cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder') par(op) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Component',header=TRUE) a<-table.element(a,'Window',header=TRUE) a<-table.element(a,'Degree',header=TRUE) a<-table.element(a,'Jump',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,m$win['s']) a<-table.element(a,m$deg['s']) a<-table.element(a,m$jump['s']) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,m$win['t']) a<-table.element(a,m$deg['t']) a<-table.element(a,m$jump['t']) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Low-pass',header=TRUE) a<-table.element(a,m$win['l']) a<-table.element(a,m$deg['l']) a<-table.element(a,m$jump['l']) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'t',header=TRUE) a<-table.element(a,'Observed',header=TRUE) a<-table.element(a,'Fitted',header=TRUE) a<-table.element(a,'Seasonal',header=TRUE) a<-table.element(a,'Trend',header=TRUE) a<-table.element(a,'Remainder',header=TRUE) a<-table.row.end(a) for (i in 1:nx) { a<-table.row.start(a) a<-table.element(a,i,header=TRUE) a<-table.element(a,x[i]) a<-table.element(a,x[i]+m$time.series[i,'remainder']) a<-table.element(a,m$time.series[i,'seasonal']) a<-table.element(a,m$time.series[i,'trend']) a<-table.element(a,m$time.series[i,'remainder']) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation