Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
2.7 3 -0.3 1.1 1.7 1.6 3 3.3 6.7 5.6 6 4.8 5.9 4.3 3.7 5.6 1.7 3.2 3.6 1.7 0.5 2.1 1.5 2.7 1.4 1.2 2.3 1.6 4.7 3.5 4.4 3.9 3.5 3 1.6 2.2 4.1 4.3 3.5 1.8 0.6 -0.4 -2.5 -1.6 -1.9 -1.6 -0.7 -1.1 0.3 1.3 3.3 2.4 2 3.9 4.2 4.9 5.8 4.8 4.4 5.3 2.1 2 -0.9 0.1 -0.5 -0.1 0.7 -0.4 -1.5 -0.3 1 0.4 0.3 1.8 3 2.2 3.4 3.4 3.1 4.5 4.6 5.7 4.3 4.5
# simulations
blockwidth of bootstrap
Significant digits
Quantiles
P1 P5 Q1 Q3 P95 P99
P0.5 P2.5 Q1 Q3 P97.5 P99.5
P10 P20 Q1 Q3 P80 P90
bandwidth
Chart options
R Code
par2 <- '12' par1 <- '200' par1 <- as.numeric(par1) par2 <- as.numeric(par2) if (par1 < 10) par1 = 10 if (par1 > 5000) par1 = 5000 if (par2 < 3) par2 = 3 if (par2 > length(x)) par2 = length(x) library(lattice) library(boot) boot.stat <- function(s) { s.mean <- mean(s) s.median <- median(s) s.midrange <- (max(s) + min(s)) / 2 c(s.mean, s.median, s.midrange) } (r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed')) bitmap(file='plot1.png') plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean') grid() dev.off() bitmap(file='plot2.png') plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median') grid() dev.off() bitmap(file='plot3.png') plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange') grid() dev.off() bitmap(file='plot4.png') densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean') dev.off() bitmap(file='plot5.png') densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median') dev.off() bitmap(file='plot6.png') densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange') dev.off() z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3])) colnames(z) <- list('mean','median','midrange') bitmap(file='plot7.png') boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency') grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'statistic',header=TRUE) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,'Estimate',header=TRUE) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'IQR',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) q1 <- quantile(r$t[,1],0.25)[[1]] q3 <- quantile(r$t[,1],0.75)[[1]] a<-table.element(a,q1) a<-table.element(a,r$t0[1]) a<-table.element(a,q3) a<-table.element(a,sqrt(var(r$t[,1]))) a<-table.element(a,q3-q1) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) q1 <- quantile(r$t[,2],0.25)[[1]] q3 <- quantile(r$t[,2],0.75)[[1]] a<-table.element(a,q1) a<-table.element(a,r$t0[2]) a<-table.element(a,q3) a<-table.element(a,sqrt(var(r$t[,2]))) a<-table.element(a,q3-q1) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'midrange',header=TRUE) q1 <- quantile(r$t[,3],0.25)[[1]] q3 <- quantile(r$t[,3],0.75)[[1]] a<-table.element(a,q1) a<-table.element(a,r$t0[3]) a<-table.element(a,q3) a<-table.element(a,sqrt(var(r$t[,3]))) a<-table.element(a,q3-q1) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation