Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
111 52 102 55 108 80 109 45 118 60 79 34 88 45 102 68 105 26 92 70 131 85 104 54 83 55 84 40 85 55 110 50 121 71 120 55 100 70 94 55 89 60 93 65 128 66 84 55 127 90 106 55 129 60 82 35 106 55 109 26 91 14 111 45 105 35 118 65 103 35 101 60 101 60 95 60 108 65 95 45 98 20 82 50 100 60 100 48 107 40 95 55 97 54 93 40 81 40 89 34 111 60 95 30 106 75 83 24 81 30 115 80 112 60 92 46 85 35 95 60 115 75 91 54 107 78 102 20 86 45 96 60 114 70 105 35 82 20 120 60 88 20 90 50 85 50 106 75 109 70 75 20 91 45 96 20 108 50 86 55 98 15 99 26 95 25 88 30 111 60 103 40 107 40 118 50
Names of X columns:
IQ grade
Response Variable (column number)
Explanatory Variable (column number)
Include Intercept Term ?
TRUE
TRUE
FALSE
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
cat1 <- as.numeric(par1) # cat2<- as.numeric(par2) # intercept<-as.logical(par3) x <- t(x) xdf<-data.frame(t(y)) (V1<-dimnames(y)[[1]][cat1]) (V2<-dimnames(y)[[1]][cat2]) xdf <- data.frame(xdf[[cat1]], xdf[[cat2]]) names(xdf)<-c('Y', 'X') if(intercept == FALSE) (lmxdf<-lm(Y~ X - 1, data = xdf) ) else (lmxdf<-lm(Y~ X, data = xdf) ) sumlmxdf<-summary(lmxdf) (aov.xdf<-aov(lmxdf) ) (anova.xdf<-anova(lmxdf) ) load(file='createtable') a<-table.start() nc <- ncol(sumlmxdf$'coefficients') nr <- nrow(sumlmxdf$'coefficients') a<-table.row.start(a) a<-table.element(a,'Linear Regression Model', nc+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, lmxdf$call['formula'],nc+1) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'coefficients:',1,TRUE) a<-table.element(a, ' ',nc,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ',1,TRUE) for(i in 1 : nc){ a<-table.element(a, dimnames(sumlmxdf$'coefficients')[[2]][i],1,TRUE) }#end header a<-table.row.end(a) for(i in 1: nr){ a<-table.element(a,dimnames(sumlmxdf$'coefficients')[[1]][i] ,1,TRUE) for(j in 1 : nc){ a<-table.element(a, round(sumlmxdf$coefficients[i, j], digits=3), 1 ,FALSE) }# end cols a<-table.row.end(a) } #end rows a<-table.row.start(a) a<-table.element(a, '- - - ',1,TRUE) a<-table.element(a, ' ',nc,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Std. Err. ',1,TRUE) a<-table.element(a, paste(round(sumlmxdf$'sigma', digits=3), ' on ', sumlmxdf$'df'[2], 'df') ,nc, FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R-sq. ',1,TRUE) a<-table.element(a, round(sumlmxdf$'r.squared', digits=3) ,nc, FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-sq. ',1,TRUE) a<-table.element(a, round(sumlmxdf$'adj.r.squared', digits=3) ,nc, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Statistics', 5+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ',1,TRUE) a<-table.element(a, 'Df',1,TRUE) a<-table.element(a, 'Sum Sq',1,TRUE) a<-table.element(a, 'Mean Sq',1,TRUE) a<-table.element(a, 'F value',1,TRUE) a<-table.element(a, 'Pr(>F)',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, V2,1,TRUE) a<-table.element(a, anova.xdf$Df[1]) a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3)) a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3)) a<-table.element(a, round(anova.xdf$'F value'[1], digits=3)) a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residuals',1,TRUE) a<-table.element(a, anova.xdf$Df[2]) a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3)) a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3)) a<-table.element(a, ' ') a<-table.element(a, ' ') a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') bitmap(file='regressionplot.png') plot(Y~ X, data=xdf, xlab=V2, ylab=V1, main='Regression Solution') if(intercept == TRUE) abline(coef(lmxdf), col='red') if(intercept == FALSE) abline(0.0, coef(lmxdf), col='red') dev.off() library(car) bitmap(file='residualsQQplot.png') qq.plot(resid(lmxdf), main='QQplot of Residuals of Fit') dev.off() bitmap(file='residualsplot.png') plot(xdf$X, resid(lmxdf), main='Scatterplot of Residuals of Model Fit') dev.off() bitmap(file='cooksDistanceLmplot.png') plot.lm(lmxdf, which=4) dev.off()
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation