Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
-2.60015 1.12093 -2.37554 -5.45167 -6.47391 -1.65452 0.663616 0.700361 -1.90981 -6.13262 -2.40296 -6.18589 -0.649206 -3.19162 -3.33772 -2.26146 -4.15613 -2.01792 -7.11298 0.57702 -5.48988 1.26661 -0.988795 -3.58952 -2.94593 -2.92695 -4.7879 -3.45309 -3.63031 -4.32759 -1.57391 -0.0948216 -1.22486 -4.15796 -1.31363 -7.13796 -1.33366 -0.329702 -3.288 -1.6184 -0.74414 2.34255 -2.87782 0.0880252 -1.99214 1.81324 -4.27807 -1.11386 -4.35393 0.745298 -5.45543 -3.2933 -1.30645 0.909256 -4.00527 -2.26878 1.01727 1.01727 -0.906051 -4.61837 -6.93759 0.290188 4.36591 4.34892 2.2338 4.43427 2.68348 1.25622 4.2952 4.41708 -1.116 -0.0694149 2.70901 0.599679 1.16973 1.16447 1.60205 3.51239 3.41985 -0.0341832 1.39685 4.01716 -2.67552 4.50409 3.00352 3.82077 3.53234 5.04381 1.74739 2.48142 1.45126 0.718283 0.881149 3.95342 -3.63653 3.5812 4.41519 0.868662 4.90123 2.19783 1.91871 6.05855 1.39099 1.46501 -0.01802 4.89959 -2.49383 5.71188 0.687756 0.892376 0.29607 1.50617 -0.840036 1.66369 -0.214732 2.51003 0.510272 3.87668 4.32521 -0.61786 3.97669 4.29709 2.84255 5.44574 4.65061 5.29983 5.16355 -0.856064 -2.64571 -6.51564 1.81567 -0.328607 0.11671 1.45816 1.0382 2.87943 1.21152 -1.0192 -0.482082 -0.691428 -4.57196 -0.0830399
Chart options
R Code
gp <- function(lambda, p) { (p^lambda-(1-p)^lambda)/lambda } sortx <- sort(x) c <- array(NA,dim=c(201)) for (i in 1:201) { if (i != 101) c[i] <- cor(gp(ppoints(x), lambda=(i-101)/100),sortx) } bitmap(file='test1.png') plot((-100:100)/100,c[1:201],xlab='lambda',ylab='correlation',main='PPCC Plot - Tukey lambda') grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Tukey Lambda - Key Values',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Distribution (lambda)',1,TRUE) a<-table.element(a,'Correlation',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Approx. Cauchy (lambda=-1)',header=TRUE) a<-table.element(a,c[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Exact Logistic (lambda=0)',header=TRUE) a<-table.element(a,(c[100]+c[102])/2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Approx. Normal (lambda=0.14)',header=TRUE) a<-table.element(a,c[115]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'U-shaped (lambda=0.5)',header=TRUE) a<-table.element(a,c[151]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Exactly Uniform (lambda=1)',header=TRUE) a<-table.element(a,c[201]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation