Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
11 15 19 16 24 15 17 19 19 28 26 15 26 16 24 25 22 15 21 22 27 26 26 22 21 22 20 21 20 22 21 8 22 18 20 24 17 20 23 20 22 19 15 20 22 17 14 24 17 23 25 16 18 20 18 23 24 23 13 20 20 19 22 22 15 17 19 20 22 21 21 16 20 21 20 23 15 18 22 16 17 24 13 19 20 22 19 21 15 21 24 22 20 21 19 14 25 11 17 22 20 22 15 23 20 22 16 25 18 19 25 21 22 21 22 23 20 6 15 18 24 22 21 23 20 20 18 25 16 20 14 22 26 20 17 22 22 20 17 22 17 22 21 25 11 19 24 17 22 22 17 26 19 20 19 21 24 21 19 13 24 28 27 22 23 19 18 23 21 22 17 15 21 20 26 19 28 21 19 22 21 20 19 11 17 19 20 17 21 21 12 23 22 22 21 20 18 21 24 22 20 17 19 16 19 23 8 22 23 15 17 21 25 18 23 20 21 21 24 22 22 23 17 15 24 22 19 18 21 20 19 19 16 18 23 22 23 20 24 25 25 20 23 21 23 23 11 21 27 19 21 16 22 21 22 16 18 23 24 20 20 18 4 14 22 17 23 20 18 19 20 15 24 21 19 19 27 23 23 20 17 21 23 22 16 20 16 21 19 27 13 17 18 20 22 18 6 22 15 19 17 22 10 21 21 23 18 20 27 13 20 20 22 20 24 23 19 22 24 21 19 20 16 17 25 16 23 20 23 22 15 16 20 23 24 17 19 25 14 18 22 15 27 22 26 16 25 20 19 19 24 14 18 13 19 25 20 17 17 13 20 20 24 25 19 20 20 22 18 21 20 11 18 22 21 15 23 18 23 19 23 26 19 26 20 20 23 24 26 23 19 25 23 19 27 23 24 20 16 22 26 26 24 20 20 12 21 27 26 17 20 18 28 24 24 24 12 26 23 13 23 16 23 18 25 18 18 21 7 19 21 17 22 15 20 19 10 18 25 23 25 23 21 23 19 22 23 15 23 23 24 20 23 24 17 21 19 23 22 14 19 21 23 16 23 19 19 22 26 22 24 24 11 21 21 22 22 19 18 19 27 14 15 20 22 26 20 13 26 19 20 18 20 21 26 25 20 21
Sample Range:
(leave blank to include all observations)
From:
To:
Color code
(?)
Number of bins
(?)
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
par2 <- '0' par1 <- '3' library(MASS) par1 <- as.numeric(par1) if (par2 == '0') par2 = 'Sturges' else par2 <- as.numeric(par2) x <- as.ts(x) #otherwise the fitdistr function does not work properly r <- fitdistr(x,'normal') r bitmap(file='test1.png') myhist<-hist(x,col=par1,breaks=par2,main=main,ylab=ylab,xlab=xlab,freq=F) curve(1/(r$estimate[2]*sqrt(2*pi))*exp(-1/2*((x-r$estimate[1])/r$estimate[2])^2),min(x),max(x),add=T) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Parameter',1,TRUE) a<-table.element(a,'Estimated Value',1,TRUE) a<-table.element(a,'Standard Deviation',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) a<-table.element(a,r$estimate[1]) a<-table.element(a,r$sd[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'standard deviation',header=TRUE) a<-table.element(a,r$estimate[2]) a<-table.element(a,r$sd[2]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation