Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
20 25 19 18 24 20 20 24 21 28 10 22 19 27 23 24 24 25 24 21 28 28 22 26 26 21 26 23 20 24 25 24 20 23 24 25 23 21 23 21 18 24 18 21 23 25 22 22 23 24 25 22 24 21 24 25 23 27 27 23 18 20 23 24 26 20 23 22 23 17 20 22 18 19 19 16 24 26 14 25 23 18 22 26 25 26 26 24 22 21 22 28 22 26 20 24 21 23 23 23 22 23 21 27 23 26 27 27 23 23 23 28 24 20 23 22 15 27 23 23 20 18 22 20 21 25 19 25 24 22 28 22 21 23 19 21 25 23 28 14 23 24 25 15 23 26 21 26 15 23 15 16 20 20 20 21 28 19 21 22 27 20 17 26 21 24 21 25 22 17 14 23 28 24 22 24 25 21 22 16 18 27 17 25 24 21 21 19 27 28 19 23 25 26 25 25 24 24 24 22 21 17 23 17 25 19 8 14 22 25 28 25 24 15 25 24 28 24 25 23 26 26 22 25 20 22 26 20 26 26 21 21 24 21 18 23 26 23 25 20 25 26 19 21 23 24 6 22 21 28 24 14 17 20 28 19 24 21 21 26 24 26 25 23 24 24 26 23 20 16 24 20 23 23 18 21 25 23 26 26 24 23 21 23 20 23 24 23 16 18 28 26 21 20 21 26 15 16 21 25 22 19 24 24 23 22 27 22 24 26 26 28 20 23 24 23 26 20 20 12 21 28 24 24 24 22 26 23 10 27 24 26 18 22 24 16 23 21 28 19 18 27 17 20 24 24 20 24 25 25 26 25 26 14 19 23 25 23 19 23 24 21 21 24 23 22 21 23 25 17 27 28 24 27 22 23 24 24 26 21 23 18 25 24 27 20 25 23 25 24 23 19 25 28 26 24 25 28 23 15 18 24 27 25 24 26 19 23 21 22 23 23 20 20 25 28 19 21 21 25 18 22 21 21 25 20 22 27 23 25 28 25 24 27 19 24 22 23 21 21 20 26 28 23 19 23 18 21 28 22 28 20 23 25 16 23 18 22 21 19 20 27 27 20 26 25 23 24 27 28 26 27 23 28 22 23 27 18 22 23 25 14 21 26 28 22 24 28 24 26 18 19 26 26 12 24 26 23
Sample Range:
(leave blank to include all observations)
From:
To:
Color code
(?)
Number of bins
(?)
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
par2 <- '0' par1 <- '3' library(MASS) par1 <- as.numeric(par1) if (par2 == '0') par2 = 'Sturges' else par2 <- as.numeric(par2) x <- as.ts(x) #otherwise the fitdistr function does not work properly r <- fitdistr(x,'normal') r bitmap(file='test1.png') myhist<-hist(x,col=par1,breaks=par2,main=main,ylab=ylab,xlab=xlab,freq=F) curve(1/(r$estimate[2]*sqrt(2*pi))*exp(-1/2*((x-r$estimate[1])/r$estimate[2])^2),min(x),max(x),add=T) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Parameter',1,TRUE) a<-table.element(a,'Estimated Value',1,TRUE) a<-table.element(a,'Standard Deviation',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) a<-table.element(a,r$estimate[1]) a<-table.element(a,r$sd[1]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'standard deviation',header=TRUE) a<-table.element(a,r$estimate[2]) a<-table.element(a,r$sd[2]) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation