Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
NA 6 NA 1 1 5.5 NA 6.5 4.5 2 5 0.5 5 NA NA NA 5.5 NA 3 NA 0.5 6.5 NA 7.5 5.5 4 7.5 NA 4 NA NA NA 3.5 2.5 4.5 4.5 NA 6 2.5 NA 0 5 6.5 5 6 NA 5.5 1 NA 6 5 1 5 6.5 7 4.5 NA 8.5 NA 7.5 3.5 NA NA 9 NA 3.5 NA 6.5 7.5 NA NA NA NA 7.5 NA NA 6.5 NA NA 1.5 NA NA NA 0 NA 5.5 5 NA NA NA 7 0 4.5 NA 1.5 NA 2.5 5.5 8 1 5 NA 3 3 8 NA NA NA NA NA NA 5.5 0.5 7.5 9 9.5 NA 7 8 NA 7 NA NA 9.5 4 6 8 5.5 9.5 7.5 7 NA 8 7 7 6 10 2.5 NA 8 6 8.5 6 9 NA NA 5.5 NA NA 9 NA 8.5 9 NA 9 7.5 10 NA NA NA NA 8.5 NA 10 NA 6.5 NA 8.5 NA NA 8 NA 7 7.5 7.5 9.5 6 NA 7 NA NA NA 10 NA 3.5 NA NA NA NA 6.5 6.5 8.5 4 NA NA 8.5 NA NA NA NA 10 8 NA NA 5 NA 4.5 8.5 NA 8.5 7.5 7.5 NA NA NA 5.5 8.5 9.5 7 NA NA NA 6.5 6.5 NA NA NA 10 10 NA NA NA 7.5 4.5 4.5 0.5 NA 4.5 5.5 5 NA NA 8 NA 6.5 8 NA 5.5 NA 5 3.5 NA 9 NA 5 NA 3 NA NA 0.5 6.5 NA 4.5 8 NA 7.5 NA NA 9.5 6.5 NA 6 NA NA 8 NA NA
Box-Cox transformation parameter
1
1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
Degree (d) of non-seasonal differencing
0
0
1
2
Degree (D) of seasonal differencing
0
0
1
2
Seasonal Period
1
1
2
3
4
12
Chart options
R Code
x<-na.omit(x) par1 <- as.numeric(par1) par2 <- as.numeric(par2) par3 <- as.numeric(par3) par4 <- as.numeric(par4) if (par1 == 0) { x <- log(x) } else { x <- (x ^ par1 - 1) / par1 } if (par2 > 0) x <- diff(x,lag=1,difference=par2) if (par3 > 0) x <- diff(x,lag=par4,difference=par3) bitmap(file='test1.png') r <- spectrum(x,main='Raw Periodogram') dev.off() bitmap(file='test2.png') cpgram(x,main='Cumulative Periodogram') dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Raw Periodogram',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Box-Cox transformation parameter (lambda)',header=TRUE) a<-table.element(a,par1) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degree of non-seasonal differencing (d)',header=TRUE) a<-table.element(a,par2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degree of seasonal differencing (D)',header=TRUE) a<-table.element(a,par3) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Seasonal Period (s)',header=TRUE) a<-table.element(a,par4) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Frequency (Period)',header=TRUE) a<-table.element(a,'Spectrum',header=TRUE) a<-table.row.end(a) for (i in 1:length(r$freq)) { a<-table.row.start(a) mylab <- round(r$freq[i],4) mylab <- paste(mylab,' (',sep='') mylab <- paste(mylab,round(1/r$freq[i],4),sep='') mylab <- paste(mylab,')',sep='') a<-table.element(a,mylab,header=TRUE) a<-table.element(a,round(r$spec[i],6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation