Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
177.134 275.473 140.104 169.678 -77.275 891.108 250.174 -297.809 13.762 208.327 302.016 176.525 -12.416 391.393 -818.973 -458.155 303.575 -110.911 160.706 -167.435 137.753 103.955 854.714 558.286 128.952 112.167 141.272 -420.117 130.918 210.509 -293.421 217.182 -138.866 314.742 -262.607 -332.765 236.806 -277.338 30.49 316.753 -186.579 150.646 323.699 389.869 -647.869 549.751 -217.736 -424.914 -243.735 -451.439 -129.457 -856.943 198.799 204.312 -976.519 -139.128 541.967 980.583 -749.859 -326.996 320.638 350.556 -201.917 757.495 590.233 -58.423 531.191 845.579 641.083 -184.908 482.356 -0.316403 -507.078 -314.234 245.152 400.014 -138.615 288.476 -441.214 -154.647 -279.658 -722.181 -364.142 -280.051 565.309 -212.271 -472.508 -488.874 -328.597 109.981 -48.453 -220.086 940.623 -211.858 -24.147 -636.286 0.692157 -248.617 -22.238 -12.477 -539.797 -231.031 -246.312 504.397 -238.122 -19.33 -204.764 -243.259 -699.893 -231.561 -58.006 -213.486 -75.592 -611.994 315.324 324.898 -11.454 -540.928 727.103 353.949 371.073 -520.572 291.813 -842.642 -188.576 -955.033 241.059 -204.009 667.667 -184.724 -423.932 452.052 -0.357521 -892.989 -380.235 -413.534 412.896 -870.326 324.802 -602.511 -361.014 503.819 349.267 11.473 319.892 299.282 -51.957 -776.226 16.372 558.085 55.29 -32.663 382.525 635.435 -522.208 -311.668 437.115 -106.245 -53.654 -320.529 505.378 -282.126 618.721 -116.524 485.937 -626.507 112.338 -171.696 -166.287 -327.282 -221.452 392.627 299.149 505.787 511.224 0.221179 592.677 574.955 357.948 -552.271 -192.701 169.562 453.324 -679.272 434.323 -256.987 -358.327 194.262 354.889 -469.548 -472.594 -246.451 -440.305 -0.617302 -267.016 -389.551 460.229 -175.834 -26.627 -276.029 104.865 -487.819 332.228 131.642 193.422 -404.628 -637.423 -520.303 339.595 0.912762 -657.278 442.913 115.977 -24.414 495.244 -239.238 -499.999 669.819 -454.119 721.129 391.058 -58.183 325.058 313.475 638.505 -442.521 298.102 -199.447 138.923 463.432 628.653 371.696 -180.676 667.982 -104.313 -546.962 -509.893 42.526 -347.282 -21.911 0.883971 -350.482 -174.501 638.584 -136.735 145.339 629.914 217.804 228.558 28.797 415.738 -156.146 -546.979 -977.775 714.867 827.442 -360.353 -78.239 861.913 732.424 -527.477 -784.179 -266.735 0.00778122 0.222608 -35.317 -191.624 642.386 145.397 -440.801 23.695 -221.131 -464.626 915.522 554.278 204.138 237.446
# simulations
Significant digits
Bandwidth
(?)
Quantiles
P1 P5 Q1 Q3 P95 P99
P1 P5 Q1 Q3 P95 P99
P0.5 P2.5 Q1 Q3 P97.5 P99.5
P10 P20 Q1 Q3 P80 P90
Chart options
R Code
par1 <- as.numeric(par1) par2 <- as.numeric(par2) if (par3 == '0') bw <- NULL if (par3 != '0') bw <- as.numeric(par3) if (par1 < 10) par1 = 10 if (par1 > 5000) par1 = 5000 library(modeest) library(lattice) library(boot) boot.stat <- function(s,i) { s.mean <- mean(s[i]) s.median <- median(s[i]) s.midrange <- (max(s[i]) + min(s[i])) / 2 s.mode <- mlv(s[i], method='mfv')$M s.kernelmode <- mlv(s[i], method='kernel', bw=bw)$M c(s.mean, s.median, s.midrange, s.mode, s.kernelmode) } (r <- boot(x,boot.stat, R=par1, stype='i')) bitmap(file='plot1.png') plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean') grid() dev.off() bitmap(file='plot2.png') plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median') grid() dev.off() bitmap(file='plot3.png') plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange') grid() dev.off() bitmap(file='plot7.png') plot(r$t[,4],type='p',ylab='simulated values',main='Simulation of Mode') grid() dev.off() bitmap(file='plot8.png') plot(r$t[,5],type='p',ylab='simulated values',main='Simulation of Mode of Kernel Density') grid() dev.off() bitmap(file='plot4.png') densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean') dev.off() bitmap(file='plot5.png') densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median') dev.off() bitmap(file='plot6.png') densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange') dev.off() bitmap(file='plot9.png') densityplot(~r$t[,4],col='black',main='Density Plot',xlab='mode') dev.off() bitmap(file='plot10.png') densityplot(~r$t[,5],col='black',main='Density Plot',xlab='mode of kernel dens.') dev.off() z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3],r$t[,4],r$t[,5])) colnames(z) <- list('mean','median','midrange','mode','mode k.dens') bitmap(file='plot11.png') boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency') grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Estimation Results of Bootstrap',10,TRUE) a<-table.row.end(a) if (par4 == 'P1 P5 Q1 Q3 P95 P99') { myq.1 <- 0.01 myq.2 <- 0.05 myq.3 <- 0.95 myq.4 <- 0.99 myl.1 <- 'P1' myl.2 <- 'P5' myl.3 <- 'P95' myl.4 <- 'P99' } if (par4 == 'P0.5 P2.5 Q1 Q3 P97.5 P99.5') { myq.1 <- 0.005 myq.2 <- 0.025 myq.3 <- 0.975 myq.4 <- 0.995 myl.1 <- 'P0.5' myl.2 <- 'P2.5' myl.3 <- 'P97.5' myl.4 <- 'P99.5' } if (par4 == 'P10 P20 Q1 Q3 P80 P90') { myq.1 <- 0.10 myq.2 <- 0.20 myq.3 <- 0.80 myq.4 <- 0.90 myl.1 <- 'P10' myl.2 <- 'P20' myl.3 <- 'P80' myl.4 <- 'P90' } a<-table.row.start(a) a<-table.element(a,'statistic',header=TRUE) a<-table.element(a,myl.1,header=TRUE) a<-table.element(a,myl.2,header=TRUE) a<-table.element(a,'Q1',header=TRUE) a<-table.element(a,'Estimate',header=TRUE) a<-table.element(a,'Q3',header=TRUE) a<-table.element(a,myl.3,header=TRUE) a<-table.element(a,myl.4,header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'IQR',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mean',header=TRUE) q1 <- quantile(r$t[,1],0.25)[[1]] q3 <- quantile(r$t[,1],0.75)[[1]] p01 <- quantile(r$t[,1],myq.1)[[1]] p05 <- quantile(r$t[,1],myq.2)[[1]] p95 <- quantile(r$t[,1],myq.3)[[1]] p99 <- quantile(r$t[,1],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[1],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element( a,signif( sqrt(var(r$t[,1])),par2 ) ) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'median',header=TRUE) q1 <- quantile(r$t[,2],0.25)[[1]] q3 <- quantile(r$t[,2],0.75)[[1]] p01 <- quantile(r$t[,2],myq.1)[[1]] p05 <- quantile(r$t[,2],myq.2)[[1]] p95 <- quantile(r$t[,2],myq.3)[[1]] p99 <- quantile(r$t[,2],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[2],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,2])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'midrange',header=TRUE) q1 <- quantile(r$t[,3],0.25)[[1]] q3 <- quantile(r$t[,3],0.75)[[1]] p01 <- quantile(r$t[,3],myq.1)[[1]] p05 <- quantile(r$t[,3],myq.2)[[1]] p95 <- quantile(r$t[,3],myq.3)[[1]] p99 <- quantile(r$t[,3],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[3],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,3])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode',header=TRUE) q1 <- quantile(r$t[,4],0.25)[[1]] q3 <- quantile(r$t[,4],0.75)[[1]] p01 <- quantile(r$t[,4],myq.1)[[1]] p05 <- quantile(r$t[,4],myq.2)[[1]] p95 <- quantile(r$t[,4],myq.3)[[1]] p99 <- quantile(r$t[,4],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[4],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,4])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'mode k.dens',header=TRUE) q1 <- quantile(r$t[,5],0.25)[[1]] q3 <- quantile(r$t[,5],0.75)[[1]] p01 <- quantile(r$t[,5],myq.1)[[1]] p05 <- quantile(r$t[,5],myq.2)[[1]] p95 <- quantile(r$t[,5],myq.3)[[1]] p99 <- quantile(r$t[,5],myq.4)[[1]] a<-table.element(a,signif(p01,par2)) a<-table.element(a,signif(p05,par2)) a<-table.element(a,signif(q1,par2)) a<-table.element(a,signif(r$t0[5],par2)) a<-table.element(a,signif(q3,par2)) a<-table.element(a,signif(p95,par2)) a<-table.element(a,signif(p99,par2)) a<-table.element(a,signif(sqrt(var(r$t[,5])),par2)) a<-table.element(a,signif(q3-q1,par2)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation