Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
-0.531003 0.429981 -0.544847 0.417395 0.447601 0.436274 -0.563726 0.447601 0.396 0.417395 0.44005 0.41362 0.436274 -0.571278 -0.583863 -0.576312 0.447601 -0.56876 0.43124 -0.591415 0.419912 0.42243 -0.571278 0.429981 0.42243 0.435015 0.429981 -0.562468 0.421171 -0.564985 -0.534779 -0.566243 0.437532 0.428722 0.447601 0.437532 0.435015 -0.566243 0.43124 0.424947 -0.557433 0.452635 0.441308 0.438791 0.45767 0.463963 -0.583863 0.44005 0.424947 -0.582605 0.442567 0.43124 0.438791 0.447601 0.417395 0.423688 0.429981 -0.549882 0.433757 -0.554916 0.441308 0.424947 -0.56876 -0.549882 0.447601 -0.564985 0.446343 -0.581346 0.428722 0.443825 -0.544847 -0.562468 -0.562468 -0.56876 0.418654 0.445084 -0.544847 0.427464 -0.55114 0.453894 -0.581346 -0.541072 0.435015 -0.55995 -0.567502 -0.55995 0.427464 -0.548623 0.428722 0.426205 -0.57757 -0.56876 -0.566243 0.436274 0.458928 0.414878 -0.538555 0.441308 -0.582605 0.428722 0.429981 0.44886 0.421171 0.428722 -0.581346 0.468997 0.424947 0.436274 -0.562468 -0.567502 -0.561209 -0.573795 -0.56876 -0.57757 0.424947 0.436274 0.481583 0.443825 0.43124 -0.563726 0.432498 0.438791 -0.572536 0.426205 -0.563726 -0.553657 0.417395 0.436274 0.432498 0.455153 0.433757 0.411102 0.437532 0.441308 -0.573795 0.438791 0.42243 0.460187 0.417395 0.443825 0.433757 -0.572536 0.424947 0.460187 0.442567 0.414878 0.436274 -0.567502 -0.567502 -0.549882 0.409844 -0.562468 -0.563726 -0.561209 0.437532 -0.573795 0.43124 0.43124 -0.534779 0.418654 0.418654 0.409844 -0.567502 -0.578829 -0.548623 -0.556175 0.428722 -0.552399 0.424947 -0.562468 0.438791 -0.563726 0.433757 -0.581346 -0.575053 0.401034 -0.562468 0.43124 0.43124 0.43124 0.435015 0.442567 -0.529745 0.442567 -0.556175 -0.561209 -0.547365 0.437532 -0.571278 0.45767 -0.571278 -0.573795 -0.576312 -0.57757 0.435015 0.443825 0.417395 0.427464 -0.578829 -0.546106 0.438791 -0.558692 -0.558692 -0.557433 -0.581346 0.442567 0.42243 -0.571278 -0.553657 0.437532 -0.552399 0.432498 0.453894 0.43124 -0.554916 0.438791 0.433757 0.429981 -0.573795 -0.567502 -0.56876 0.44005 0.455153 -0.552399 0.427464 0.443825 -0.562468 -0.571278 -0.578829 0.435015 0.441308 -0.562468 -0.557433 -0.572536 0.423688 0.423688 -0.562468 -0.578829 -0.563726 0.417395 0.438791 0.433757 0.428722 -0.56876 0.42243 0.462704 0.419912 -0.587639 -0.561209 0.429981 -0.557433 0.433757 0.442567 0.429981 -0.552399 0.450118 -0.57757 0.42243 0.43124 -0.562468 0.438791 -0.525969 0.450118 -0.572536 0.43124 -0.581346 -0.564985 0.44886 0.436274 -0.566243 0.446343 0.423688 -0.564985 0.438791 -0.543589 -0.593932 0.418654 0.423688 -0.572536 0.442567 -0.567502 -0.571278 0.426205 -0.553657 -0.570019 0.445084 0.428722 0.437532 -0.570019 0.463963 0.443825 0.437532 0.43124 -0.571278 0.446343 -0.5159 -0.564985 0.44886 -0.55995 0.446343 -0.576312 -0.536037 0.443825 -0.56876 0.438791 0.433757 -0.558692 -0.567502 -0.54233 0.432498 -0.549882 0.427464 0.433757 0.418654 0.432498 -0.554916 0.437532 -0.557433 0.44886 -0.564985 -0.564985 -0.549882 -0.567502 -0.567502 -0.556175 0.42243 0.447601 0.419912 -0.572536 -0.547365 -0.553657 -0.573795 -0.570019 0.417395 0.436274 0.436274 0.414878 -0.556175 0.443825 -0.564985 0.451377 0.41362 -0.566243 0.40481 -0.554916 -0.573795 -0.557433 -0.561209 -0.581346 -0.573795 0.450118 -0.564985 -0.541072 0.437532 0.414878 0.426205 0.445084 -0.571278 0.452635 0.437532 -0.563726 -0.55995 -0.57757 -0.553657 0.437532 -0.563726 -0.573795 -0.564985 -0.564985 -0.563726 -0.537296 0.437532 0.419912 0.437532 -0.55995 -0.575053 0.428722 -0.576312 0.433757 0.436274 0.411102 0.438791 0.419912 -0.564985 -0.56876 -0.57757 -0.576312 -0.581346 0.438791 -0.554916 -0.571278 0.436274 -0.564985 -0.583863 0.427464 -0.571278 0.436274 0.445084 -0.571278 0.41362 -0.585122 0.412361 -0.556175 0.428722 0.452635 0.443825 -0.578829 0.417395 0.446343 -0.566243 0.450118 0.416137 0.42243 0.429981 -0.575053 0.452635 -0.585122 -0.578829 0.453894 -0.572536 0.437532 0.427464 -0.562468 -0.580088 0.442567 0.438791 0.429981 0.47529 -0.557433 0.437532 0.455153 0.417395 0.447601 -0.571278 -0.562468 0.451377 -0.549882 0.428722 0.421171 -0.578829 0.428722 -0.561209 0.427464 -0.567502 -0.572536 0.428722 0.450118 0.43124 0.42243 -0.59519 -0.573795 0.428722 -0.578829 0.442567 -0.556175 0.423688 0.426205 0.438791 0.443825 0.446343 0.428722 0.43124 0.447601 -0.566243 0.433757 -0.56876 -0.580088 0.418654 0.423688 0.428722 0.417395 0.470255 0.43124 0.435015 -0.56876 0.427464 0.443825 0.44005 -0.56876 0.406068 0.460187 0.44005 0.435015 -0.571278 0.411102 0.437532 -0.55114 -0.585122 0.437532 0.433757 0.436274 0.427464 -0.562468 0.417395 -0.578829 0.428722 0.435015
Chart options
Title:
Y-axis minimum
Y-axis maximum
R Code
geomean <- function(x) { return(exp(mean(log(x)))) } harmean <- function(x) { return(1/mean(1/x)) } quamean <- function(x) { return(sqrt(mean(x*x))) } winmean <- function(x) { x <-sort(x[!is.na(x)]) n<-length(x) denom <- 3 nodenom <- n/denom if (nodenom>40) denom <- n/40 sqrtn = sqrt(n) roundnodenom = floor(nodenom) win <- array(NA,dim=c(roundnodenom,2)) for (j in 1:roundnodenom) { win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn } return(win) } trimean <- function(x) { x <-sort(x[!is.na(x)]) n<-length(x) denom <- 3 nodenom <- n/denom if (nodenom>40) denom <- n/40 sqrtn = sqrt(n) roundnodenom = floor(nodenom) tri <- array(NA,dim=c(roundnodenom,2)) for (j in 1:roundnodenom) { tri[j,1] <- mean(x,trim=j/n) tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2) } return(tri) } midrange <- function(x) { return((max(x)+min(x))/2) } q1 <- function(data,n,p,i,f) { np <- n*p; i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q2 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q3 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- data[i+1] } } q4 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- (data[i]+data[i+1])/2 } else { qvalue <- data[i+1] } } q5 <- function(data,n,p,i,f) { np <- (n-1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i+1] } else { qvalue <- data[i+1] + f*(data[i+2]-data[i+1]) } } q6 <- function(data,n,p,i,f) { np <- n*p+0.5 i <<- floor(np) f <<- np - i qvalue <- data[i] } q7 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- f*data[i] + (1-f)*data[i+1] } } q8 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { if (f == 0.5) { qvalue <- (data[i]+data[i+1])/2 } else { if (f < 0.5) { qvalue <- data[i] } else { qvalue <- data[i+1] } } } } midmean <- function(x,def) { x <-sort(x[!is.na(x)]) n<-length(x) if (def==1) { qvalue1 <- q1(x,n,0.25,i,f) qvalue3 <- q1(x,n,0.75,i,f) } if (def==2) { qvalue1 <- q2(x,n,0.25,i,f) qvalue3 <- q2(x,n,0.75,i,f) } if (def==3) { qvalue1 <- q3(x,n,0.25,i,f) qvalue3 <- q3(x,n,0.75,i,f) } if (def==4) { qvalue1 <- q4(x,n,0.25,i,f) qvalue3 <- q4(x,n,0.75,i,f) } if (def==5) { qvalue1 <- q5(x,n,0.25,i,f) qvalue3 <- q5(x,n,0.75,i,f) } if (def==6) { qvalue1 <- q6(x,n,0.25,i,f) qvalue3 <- q6(x,n,0.75,i,f) } if (def==7) { qvalue1 <- q7(x,n,0.25,i,f) qvalue3 <- q7(x,n,0.75,i,f) } if (def==8) { qvalue1 <- q8(x,n,0.25,i,f) qvalue3 <- q8(x,n,0.75,i,f) } midm <- 0 myn <- 0 roundno4 <- round(n/4) round3no4 <- round(3*n/4) for (i in 1:n) { if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){ midm = midm + x[i] myn = myn + 1 } } midm = midm / myn return(midm) } (arm <- mean(x)) sqrtn <- sqrt(length(x)) (armse <- sd(x) / sqrtn) (armose <- arm / armse) (geo <- geomean(x)) (har <- harmean(x)) (qua <- quamean(x)) (win <- winmean(x)) (tri <- trimean(x)) (midr <- midrange(x)) midm <- array(NA,dim=8) for (j in 1:8) midm[j] <- midmean(x,j) midm bitmap(file='test1.png') lb <- win[,1] - 2*win[,2] ub <- win[,1] + 2*win[,2] if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax)) lines(ub,lty=3) lines(lb,lty=3) grid() dev.off() bitmap(file='test2.png') lb <- tri[,1] - 2*tri[,2] ub <- tri[,1] + 2*tri[,2] if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax)) lines(ub,lty=3) lines(lb,lty=3) grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Measure',header=TRUE) a<-table.element(a,'Value',header=TRUE) a<-table.element(a,'S.E.',header=TRUE) a<-table.element(a,'Value/S.E.',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE) a<-table.element(a,arm) a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean')) a<-table.element(a,armose) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE) a<-table.element(a,geo) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE) a<-table.element(a,har) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE) a<-table.element(a,qua) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) for (j in 1:length(win[,1])) { a<-table.row.start(a) mylabel <- paste('Winsorized Mean (',j) mylabel <- paste(mylabel,'/') mylabel <- paste(mylabel,length(win[,1])) mylabel <- paste(mylabel,')') a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE) a<-table.element(a,win[j,1]) a<-table.element(a,win[j,2]) a<-table.element(a,win[j,1]/win[j,2]) a<-table.row.end(a) } for (j in 1:length(tri[,1])) { a<-table.row.start(a) mylabel <- paste('Trimmed Mean (',j) mylabel <- paste(mylabel,'/') mylabel <- paste(mylabel,length(tri[,1])) mylabel <- paste(mylabel,')') a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE) a<-table.element(a,tri[j,1]) a<-table.element(a,tri[j,2]) a<-table.element(a,tri[j,1]/tri[j,2]) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE) a<-table.element(a,median(x)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE) a<-table.element(a,midr) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean') mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,midm[1]) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean') mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,midm[2]) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean') mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,midm[3]) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean') mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,midm[4]) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean') mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,midm[5]) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean') mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,midm[6]) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean') mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,midm[7]) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean') mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ') a<-table.element(a,mylabel,header=TRUE) a<-table.element(a,midm[8]) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Number of observations',header=TRUE) a<-table.element(a,length(x)) a<-table.element(a,'') a<-table.element(a,'') a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation