Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data:
9 8 8 8 8 7 8 9 8 7 9 7 8 8 8 8 8 6 9 7 7 8 7 8 8 3 9 8 8 6 5 8 8 9 7 7 3 7 8 8 7 8 8 9 6 9 8 8 8 7 8 7 7 9 7 9 7 6 3 9 9 7 6 9 8 8 7 9 5 6 8 8 8 8 7 8 9 9 8 4 7 8 6 7 7 3 8 8 8 8 5 6 6 7 7 7 8 9 8 8 7 9 7 6 7 8 6 2 4 8 6 8 6 7 7 7 9 7 6 8 8 9 7 6 8 6 6 9 6 9 8 8 9 6 4 8 5 7 9 9 8 6 8 3 8 7 9 4 6 3 8 8 9 8 8 9 8 9 7 7 6 8 6 7 8 8 7 9 9 9 6 8 9 9 8 8 8 8 8 9 6 9 8 8 8 8 9 9 9 8 8 8 3 6 5 4 9 8 3 6 6 9 7 6 9 7 8 8 8 0 6 9 9 6 8 8 5 6 9 9 9 6 4 8 4 5 8 6 8 9 7 4 8 8 8 4 9 8 6 3 7 8 7 7 8 7 7 6 8 8 7 9 9 7 7 8 8 6 9 6 5 7 9 6 7 5 9 8 4 9 8 7 8 1 8 8 9 8 9 6 7 8 8 9 9 7 8 2 4 5 8 6 9 8 4 7 7 8 5 5 7 7 8 6 7 8 8 7 9 8 6 8 5 3 6 4 5 9 5 6 7 6 9 6 7 8 5 4 4 4 5 4 6 5 5 6 5 7 6 6 8 7 9 4 7 7 8 8 7 7 9 6 7 8 5 5 5 8 5 7 6 5 7 6 8 9 7 7 9 7 7 6 8 8 7 5 6 8 7 6 4 6 7 8 7 8 9 8 7 4 6 7 8 6 7 8 7 8 9 7 8 8 9 6 8 8 9 7 6 5 8 8 6 4 9 6 5 8 9 4 7 5 8 7 8 6 9 5 6 7 9 6 6 9 9 6 6 9 8 6 6 7 7 2 6 9 6 5 6 8 3 6 8 9 9 8 9 7 5 7 9 9 8 8 6 9 8 9 8 7 8 7 5 7 7 6 7 6 9 6 7 4 8 6 5 7 8
Sample Range:
(leave blank to include all observations)
From:
To:
Chart options
R Code
x <-sort(x[!is.na(x)]) q1 <- function(data,n,p,i,f) { np <- n*p; i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q2 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i qvalue <- (1-f)*data[i] + f*data[i+1] } q3 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- data[i+1] } } q4 <- function(data,n,p,i,f) { np <- n*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- (data[i]+data[i+1])/2 } else { qvalue <- data[i+1] } } q5 <- function(data,n,p,i,f) { np <- (n-1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i+1] } else { qvalue <- data[i+1] + f*(data[i+2]-data[i+1]) } } q6 <- function(data,n,p,i,f) { np <- n*p+0.5 i <<- floor(np) f <<- np - i qvalue <- data[i] } q7 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { qvalue <- f*data[i] + (1-f)*data[i+1] } } q8 <- function(data,n,p,i,f) { np <- (n+1)*p i <<- floor(np) f <<- np - i if (f==0) { qvalue <- data[i] } else { if (f == 0.5) { qvalue <- (data[i]+data[i+1])/2 } else { if (f < 0.5) { qvalue <- data[i] } else { qvalue <- data[i+1] } } } } lx <- length(x) qval <- array(NA,dim=c(99,8)) mystep <- 25 mystart <- 25 if (lx>10){ mystep=10 mystart=10 } if (lx>20){ mystep=5 mystart=5 } if (lx>50){ mystep=2 mystart=2 } if (lx>=100){ mystep=1 mystart=1 } for (perc in seq(mystart,99,mystep)) { qval[perc,1] <- q1(x,lx,perc/100,i,f) qval[perc,2] <- q2(x,lx,perc/100,i,f) qval[perc,3] <- q3(x,lx,perc/100,i,f) qval[perc,4] <- q4(x,lx,perc/100,i,f) qval[perc,5] <- q5(x,lx,perc/100,i,f) qval[perc,6] <- q6(x,lx,perc/100,i,f) qval[perc,7] <- q7(x,lx,perc/100,i,f) qval[perc,8] <- q8(x,lx,perc/100,i,f) } bitmap(file='test1.png') myqqnorm <- qqnorm(x,col=2) qqline(x) grid() dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Percentiles - Ungrouped Data',9,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p',1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_1.htm', 'Weighted Average at Xnp',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),1,TRUE) a<-table.element(a,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),1,TRUE) a<-table.row.end(a) for (perc in seq(mystart,99,mystep)) { a<-table.row.start(a) a<-table.element(a,round(perc/100,2),1,TRUE) for (j in 1:8) { a<-table.element(a,round(qval[perc,j],6)) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation