Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
7.5 26 50 4 25 1.00 0.50 0.67 0.67 0.50 149 149 0 21 6.0 57 62 4 16 0.89 0.50 0.83 0.33 1.00 139 139 139 22 6.5 37 54 5 25 0.89 0.40 1.00 0.67 1.00 148 148 0 22 1.0 67 71 4 29 0.89 0.50 0.83 0.00 0.00 158 158 158 18 1.0 43 54 4 25 0.89 0.70 0.67 0.00 1.00 128 128 128 23 5.5 52 65 9 23 0.78 0.30 0.00 0.00 0.50 224 224 224 12 8.5 52 73 8 22 0.89 0.40 0.83 0.67 0.00 159 159 0 20 6.5 43 52 11 23 1.00 0.40 0.50 0.67 1.00 105 105 105 22 4.5 84 84 4 35 0.89 0.70 0.83 0.00 0.00 159 159 159 21 2.0 67 42 4 29 0.78 0.60 0.33 0.67 0.50 167 167 167 19 5.0 49 66 6 27 1.00 0.60 0.50 1.00 0.50 165 165 165 22 0.5 70 65 4 26 0.78 0.20 0.67 0.00 0.50 159 159 159 15 5.0 52 78 8 22 0.89 0.40 1.00 0.00 0.50 119 119 119 20 5.0 58 73 4 31 0.89 0.40 0.50 0.67 1.00 176 176 0 19 2.5 68 75 4 17 0.89 0.50 0.67 0.33 0.00 54 54 0 18 5.0 62 72 11 28 0.89 0.30 0.17 0.67 0.50 91 0 0 15 5.5 43 66 4 30 0.89 0.40 0.83 0.33 0.50 163 163 163 20 3.5 56 70 4 26 0.67 0.70 0.67 0.33 1.00 124 124 0 21 3.0 56 61 6 21 1.00 0.50 0.67 0.33 1.00 137 0 137 21 4.0 74 81 6 26 0.78 0.20 0.67 0.00 1.00 121 121 0 15 0.5 65 71 4 34 0.78 0.30 0.50 0.67 0.50 153 153 153 16 6.5 63 69 8 29 0.89 0.60 1.00 0.33 1.00 148 148 148 23 4.5 58 71 5 28 0.78 0.60 0.83 0.33 1.00 221 221 0 21 7.5 57 72 4 22 0.89 0.20 0.83 0.33 1.00 188 188 188 18 5.5 63 68 9 22 0.89 0.70 1.00 0.67 0.00 149 149 149 25 4.0 53 70 4 25 0.33 0.20 0.67 0.00 0.00 244 244 244 9 7.5 57 68 7 21 1.00 1.00 1.00 0.33 1.00 148 0 148 30 7.0 51 61 10 28 0.89 0.40 0.83 0.67 0.50 92 0 0 20 4.0 64 67 4 27 0.89 0.40 1.00 1.00 1.00 150 150 150 23 5.5 53 76 4 30 0.67 0.20 0.83 0.67 0.50 153 153 0 16 2.5 29 70 7 23 0.56 0.40 0.67 0.33 1.00 94 94 0 16 5.5 54 60 12 27 0.89 0.40 0.67 0.00 1.00 156 156 0 19 3.5 58 72 7 27 0.89 0.70 1.00 0.67 0.50 132 132 132 25 2.5 43 69 5 31 1.00 0.20 0.67 0.67 0.50 161 161 161 18 4.5 51 71 8 28 0.78 0.60 1.00 1.00 0.50 105 105 105 23 4.5 53 62 5 16 0.78 0.30 1.00 1.00 0.50 97 97 97 21 4.5 54 70 4 13 0.33 0.30 0.50 0.33 0.00 151 151 0 10 6.0 56 64 9 30 0.78 0.20 0.67 0.00 0.00 131 0 131 14 2.5 61 58 7 25 0.89 0.50 0.83 0.67 0.50 166 166 166 22 5.0 47 76 4 16 0.89 0.70 1.00 0.67 1.00 157 157 0 26 0.0 39 52 4 26 0.78 0.60 1.00 0.67 0.50 111 111 111 23 5.0 48 59 4 22 0.89 0.40 1.00 0.67 1.00 145 145 145 23 6.5 50 68 4 22 0.89 0.60 1.00 0.33 1.00 162 162 162 24 5.0 35 76 4 28 1.00 0.40 1.00 1.00 1.00 163 163 163 24 6.0 30 65 7 27 0.67 0.30 0.83 0.67 1.00 59 0 59 18 4.5 68 67 4 14 1.00 0.50 0.83 0.67 0.50 187 187 0 23 5.5 49 59 7 28 0.89 0.20 0.50 0.00 1.00 109 109 109 15 1.0 61 69 4 27 0.89 0.30 0.83 0.00 1.00 90 0 90 19 7.5 67 76 4 16 0.89 0.50 0.17 0.00 1.00 105 105 0 16 6.0 47 63 4 23 0.78 0.70 0.83 1.00 1.00 83 0 83 25 5.0 56 75 4 25 0.89 0.40 1.00 0.67 0.50 116 0 116 23 1.0 50 63 8 20 0.78 0.30 1.00 0.00 0.50 42 0 42 17 5.0 43 60 4 28 0.78 0.20 0.67 0.67 1.00 148 148 148 19 6.5 67 73 4 32 1.00 0.50 1.00 0.00 0.50 155 0 155 21 7.0 62 63 4 33 0.78 0.40 1.00 0.00 0.00 125 125 125 18 4.5 57 70 4 26 1.00 0.60 1.00 0.67 1.00 116 116 116 27 0.0 41 75 7 21 0.78 0.40 0.83 1.00 1.00 128 0 0 21 8.5 54 66 12 27 0.67 0.40 0.33 0.00 0.50 138 138 138 13 3.5 45 63 4 20 0.33 0.20 0.33 0.33 0.00 49 0 0 8 7.5 48 63 4 28 1.00 0.90 1.00 0.67 1.00 96 0 96 29 3.5 61 64 4 26 1.00 0.80 1.00 0.67 0.50 164 164 164 28 6.0 56 70 5 21 0.78 0.80 0.83 0.00 1.00 162 162 0 23 1.5 41 75 15 16 0.67 0.30 1.00 1.00 1.00 99 99 0 21 9.0 43 61 5 28 1.00 0.20 0.83 0.67 0.50 202 202 202 19 3.5 53 60 10 19 0.89 0.40 0.67 0.00 1.00 186 186 0 19 3.5 44 62 9 24 0.89 0.20 0.83 1.00 1.00 66 0 66 20 4.0 66 73 8 26 0.78 0.20 0.67 0.67 1.00 183 183 0 18 6.5 58 61 4 24 1.00 0.10 0.83 0.67 1.00 214 214 214 19 7.5 46 66 5 23 0.56 0.40 0.67 1.00 0.00 188 188 188 17 6.0 37 64 4 27 0.67 0.50 1.00 0.00 0.50 104 0 0 19 5.0 51 59 9 29 0.89 0.80 0.83 0.33 1.00 177 177 0 25 5.5 51 64 4 26 0.89 0.40 0.67 0.67 0.50 126 126 0 19 3.5 56 60 10 19 0.89 0.60 0.83 0.33 0.50 76 0 0 22 7.5 66 56 4 19 0.89 0.50 0.83 0.67 1.00 99 0 99 23 6.5 37 78 4 12 0.78 0.30 0.67 0.00 0.00 139 139 0 14 NA 59 53 6 23 0.89 0.80 1.00 1.00 1.00 78 78 78 28 6.5 42 67 7 25 1.00 0.40 0.33 0.00 0.00 162 162 0 16 6.5 38 59 5 24 1.00 0.60 0.83 0.67 0.50 108 0 108 24 7.0 66 66 4 26 0.89 0.40 1.00 0.33 0.50 159 159 0 20 3.5 34 68 4 23 0.44 0.30 0.83 0.00 0.00 74 0 0 12 1.5 53 71 4 28 0.78 0.80 0.83 0.00 1.00 110 110 110 24 4.0 49 66 4 25 0.89 0.60 0.50 0.33 1.00 96 0 0 22 7.5 55 73 4 23 0.67 0.30 0.50 0.00 0.00 116 0 0 12 4.5 49 72 4 28 0.78 0.50 0.83 0.67 1.00 87 0 0 22 0.0 59 71 6 23 0.78 0.40 1.00 0.33 1.00 97 0 97 20 3.5 40 59 10 25 0.33 0.30 0.33 0.67 0.00 127 0 0 10 5.5 58 64 7 27 0.89 0.70 1.00 0.33 0.50 106 0 106 23 5.0 60 66 4 28 0.89 0.20 0.67 0.33 0.50 80 0 80 17 4.5 63 78 4 17 0.89 0.40 0.83 1.00 1.00 74 0 0 22 2.5 56 68 7 23 0.89 0.60 1.00 0.67 0.50 91 0 0 24 7.5 54 73 4 24 0.56 0.60 0.83 0.00 1.00 133 0 0 18 7.0 52 62 8 18 0.67 0.60 0.83 0.67 0.50 74 0 74 21 0.0 34 65 11 21 0.67 0.40 1.00 0.33 1.00 114 0 114 20 4.5 69 68 6 34 0.78 0.60 0.83 0.00 1.00 140 0 140 20 3.0 32 65 14 24 0.78 0.50 1.00 0.33 1.00 95 0 0 22 1.5 48 60 5 24 0.78 0.50 0.83 0.00 1.00 98 0 98 19 3.5 67 71 4 28 0.89 0.60 0.67 0.00 1.00 121 0 0 20 2.5 58 65 8 27 1.00 0.80 0.83 0.33 1.00 126 0 126 26 5.5 57 68 9 24 0.89 0.50 0.83 0.67 0.50 98 0 98 23 8.0 42 64 4 19 0.89 0.60 0.83 0.67 1.00 95 0 95 24 1.0 64 74 4 19 0.78 0.40 0.83 0.67 1.00 110 0 110 21 5.0 58 69 5 27 1.00 0.30 0.67 0.67 1.00 70 0 70 21 4.5 66 76 4 28 0.78 0.30 0.83 1.00 0.50 102 0 0 19 3.0 26 68 5 22 0.67 0.20 0.00 0.00 0.00 86 0 86 8 3.0 61 72 4 32 0.78 0.40 0.83 0.00 0.50 130 0 130 17 8.0 52 67 4 20 0.89 0.50 1.00 0.00 0.50 96 0 96 20 2.5 51 63 7 26 0.67 0.30 0.17 0.00 0.00 102 0 0 11 7.0 55 59 10 19 0.22 0.40 0.17 0.00 0.00 100 0 0 8 0.0 50 73 4 24 0.44 0.50 0.50 1.00 0.00 94 0 0 15 1.0 60 66 5 21 0.89 0.30 0.50 0.67 1.00 52 0 0 18 3.5 56 62 4 21 0.67 0.50 1.00 0.00 0.50 98 0 0 18 5.5 63 69 4 27 0.89 0.40 0.67 0.67 0.50 118 0 0 19 5.5 61 66 4 18 0.67 0.40 0.83 0.67 1.00 99 0 99 19 0.5 52 51 6 25 0.78 0.60 1.00 0.00 1.00 0 48 48 23 7.5 16 56 4 27 0.78 0.30 1.00 0.67 1.00 0 50 50 22 9 46 67 8 28 0.78 0.40 1.00 0.33 0.50 0 150 150 21 9.5 56 69 5 28 1.00 0.30 1.00 1.00 1.00 0 154 154 25 8.5 52 57 4 19 0.78 1.00 1.00 1.00 1.00 0 0 0 30 7 55 56 17 27 0.67 0.40 1.00 0.00 0.50 0 0 68 17 8 50 55 4 26 0.89 0.80 0.83 1.00 1.00 0 194 194 27 10 59 63 4 27 0.89 0.30 1.00 0.67 1.00 0 158 0 23 7 60 67 8 26 1.00 0.50 0.83 0.67 1.00 0 159 159 23 8.5 52 65 4 28 0.78 0.40 1.00 0.00 0.50 0 67 0 18 9 44 47 7 20 0.67 0.30 0.83 0.67 1.00 0 147 0 18 9.5 67 76 4 32 0.89 0.50 0.83 1.00 1.00 0 39 39 23 4 52 64 4 25 0.67 0.30 1.00 0.67 1.00 0 100 100 19 6 55 68 5 33 0.67 0.30 0.67 0.00 1.00 0 111 111 15 8 37 64 7 25 1.00 0.40 0.83 0.00 1.00 0 138 138 20 5.5 54 65 4 35 0.67 0.30 1.00 0.00 0.50 0 101 101 16 9.5 72 71 4 28 1.00 0.60 1.00 0.33 0.50 0 0 131 24 7.5 51 63 7 30 0.89 0.60 0.83 0.67 1.00 0 101 101 25 7 48 60 11 28 0.89 0.40 1.00 1.00 1.00 0 114 114 25 7.5 60 68 7 27 1.00 0.40 1.00 0.00 0.00 0 165 0 19 8 50 72 4 21 0.67 0.40 1.00 0.67 0.50 0 114 114 19 7 63 70 4 25 0.44 0.30 0.67 0.67 1.00 0 111 111 16 7 33 61 4 31 0.89 0.20 1.00 0.33 0.00 0 75 75 19 6 67 61 4 28 0.56 0.50 0.83 0.67 1.00 0 82 82 19 10 46 62 4 29 0.78 0.40 1.00 0.67 1.00 0 121 121 23 2.5 54 71 4 35 1.00 0.40 1.00 0.67 0.00 0 32 32 21 9 59 71 6 25 1.00 0.40 0.83 0.67 1.00 0 150 0 22 8 61 51 8 29 0.89 0.30 0.67 0.67 0.50 0 117 117 19 6 33 56 23 12 0.67 0.40 0.83 0.67 0.50 0 0 71 20 8.5 47 70 4 30 0.89 0.20 1.00 0.33 1.00 0 165 165 20 6 69 73 8 27 0.33 0.00 0.00 0.00 0.00 0 154 154 3 9 52 76 6 28 0.89 0.40 1.00 0.67 1.00 0 126 126 23 8 55 68 4 28 0.78 0.60 1.00 0.00 1.00 0 149 0 23 9 41 48 7 25 1.00 0.40 0.67 0.67 0.50 0 145 0 20 5.5 73 52 4 28 0.44 0.40 1.00 0.00 0.50 0 120 120 15 7 52 60 4 28 0.67 0.40 0.83 0.00 0.00 0 109 0 16 5.5 50 59 4 28 0.33 0.20 0.17 0.00 0.00 0 132 0 7 9 51 57 10 26 0.89 0.40 0.83 1.00 1.00 0 172 172 24 2 60 79 6 22 0.89 0.30 0.83 0.00 0.50 0 169 0 17 8.5 56 60 5 24 1.00 0.60 0.83 0.67 0.00 0 114 114 24 9 56 60 5 28 0.89 0.60 0.83 1.00 1.00 0 156 156 24 8.5 29 59 4 27 0.89 0.40 0.83 0.00 1.00 0 172 0 19 9 66 62 4 27 1.00 0.50 1.00 0.67 0.50 0 0 68 25 7.5 66 59 5 26 0.89 0.40 0.83 0.00 1.00 0 0 89 20 10 73 61 5 29 1.00 0.60 1.00 1.00 1.00 0 167 167 28 9 55 71 5 27 0.78 0.60 0.83 0.67 1.00 0 113 0 23 7.5 64 57 5 29 0.78 0.90 1.00 0.67 1.00 0 0 0 27 6 40 66 4 28 0.67 0.40 0.83 0.67 0.00 0 0 0 18 10.5 46 63 6 28 0.89 0.80 1.00 1.00 1.00 0 0 0 28 8.5 58 69 4 27 0.67 0.50 0.83 1.00 1.00 0 0 87 21 8 43 58 4 24 0.78 0.40 0.83 1.00 0.00 0 173 0 19 10 61 59 4 29 0.89 0.40 1.00 0.67 0.50 0 2 2 23 10.5 51 48 9 17 0.89 0.70 1.00 1.00 0.50 0 0 0 27 6.5 50 66 18 27 0.78 0.40 1.00 0.33 1.00 0 0 49 22 9.5 52 73 6 23 1.00 0.80 1.00 0.67 1.00 0 0 0 28 8.5 54 67 5 27 1.00 0.40 1.00 1.00 0.50 0 0 96 25 7.5 66 61 4 22 1.00 0.30 1.00 0.67 0.50 0 0 0 21 5 61 68 11 27 0.67 0.50 1.00 0.67 1.00 0 0 0 22 8 80 75 4 35 0.89 0.80 1.00 0.67 1.00 0 0 100 28 10 51 62 10 22 1.00 0.40 0.83 0.33 0.50 0 0 0 20 7 56 69 6 20 1.00 1.00 1.00 1.00 0.00 0 0 141 29 7.5 56 58 8 26 0.89 0.50 1.00 0.67 1.00 0 165 165 25 7.5 56 60 8 26 0.89 0.50 1.00 0.67 1.00 0 165 165 25 9.5 53 74 6 26 0.89 0.30 1.00 0.33 1.00 0 0 110 20 6 47 55 8 29 0.89 0.30 0.83 0.33 1.00 0 118 118 20 10 25 62 4 18 0.89 0.30 0.50 0.00 1.00 0 158 0 16 7 47 63 4 28 1.00 0.40 0.67 0.33 0.50 0 0 146 20 3 46 69 9 15 0.67 0.50 1.00 0.33 1.00 0 49 0 20 6 50 58 9 19 1.00 0.50 0.67 0.67 1.00 0 0 0 23 7 39 58 5 13 0.89 0.40 1.00 0.00 0.00 0 0 0 18 10 51 68 4 26 0.89 0.70 1.00 1.00 0.00 0 155 155 25 7 58 72 4 26 0.89 0.50 0.50 0.33 0.50 0 0 0 18 3.5 35 62 15 21 0.89 0.40 0.67 0.33 0.00 0 0 147 19 8 58 62 10 27 1.00 0.70 0.67 1.00 1.00 0 0 0 25 10 60 65 9 24 1.00 0.70 0.67 1.00 1.00 0 0 0 25 5.5 62 69 7 22 1.00 0.70 0.67 1.00 1.00 0 0 0 25 6 63 66 9 22 0.89 0.70 0.67 1.00 1.00 0 0 0 24 6.5 53 72 6 24 0.89 0.70 0.67 0.00 0.00 0 0 61 19 6.5 46 62 4 22 0.89 0.70 1.00 0.67 1.00 0 0 60 26 8.5 67 75 7 27 0.33 0.10 0.67 0.33 0.00 0 0 109 10 4 59 58 4 26 0.67 0.20 0.67 0.67 1.00 0 0 68 17 9.5 64 66 7 25 0.56 0.30 0.33 0.33 1.00 0 0 0 13 8 38 55 4 20 0.44 0.60 0.83 0.33 0.50 0 0 0 17 8.5 50 47 15 28 1.00 0.80 1.00 1.00 1.00 0 0 73 30 5.5 48 72 4 22 0.89 0.80 1.00 0.33 0.50 0 151 0 25 7 48 62 9 27 0.33 0.00 0.17 0.00 0.00 0 0 0 4 9 47 64 4 20 0.67 0.30 0.67 0.33 1.00 0 0 0 16 8 66 64 4 26 0.67 0.60 0.83 0.33 1.00 0 0 0 21 10 47 19 28 30 1.00 0.50 0.83 0.67 1.00 0 220 220 23 8 63 50 4 24 0.78 0.70 1.00 0.33 0.50 0 0 65 22 6 58 68 4 23 0.67 0.30 0.83 0.00 1.00 0 141 0 17 8 44 70 4 26 1.00 0.30 1.00 0.67 0.00 0 0 0 20 5 51 79 5 24 0.78 0.40 1.00 0.67 0.50 0 122 122 20 9 43 69 4 27 0.89 0.40 0.83 1.00 1.00 0 0 0 22 4.5 55 71 4 31 0.89 0.10 0.83 0.00 1.00 0 44 44 16 8.5 38 48 12 21 0.89 0.50 1.00 0.67 1.00 0 0 52 23 9.5 45 73 4 10 0.00 0.00 0.00 0.00 0.00 0 0 0 0 8.5 50 74 6 15 0.67 0.40 1.00 0.33 0.00 0 0 101 18 7.5 54 66 6 29 1.00 0.60 0.83 0.67 0.50 0 0 42 25 7.5 57 71 5 29 1.00 0.40 1.00 0.33 1.00 0 152 152 23 5 60 74 4 24 0.67 0.10 0.33 0.00 1.00 0 107 0 12 7 55 78 4 20 0.89 0.30 0.83 0.00 1.00 0 0 0 18 8 56 75 4 25 0.89 0.70 0.83 0.67 1.00 0 154 0 24 5.5 49 53 10 25 0.56 0.30 0.17 0.00 1.00 0 103 103 11 8.5 37 60 7 25 0.67 0.50 0.83 0.33 0.00 0 0 96 18 9.5 59 70 4 31 1.00 0.30 0.83 0.67 1.00 0 175 175 23 7 46 69 7 25 1.00 0.60 0.67 0.67 1.00 0 0 57 24 8 51 65 4 26 1.00 0.90 1.00 1.00 1.00 0 0 0 29 8.5 58 78 4 26 0.67 0.40 0.83 0.00 1.00 0 143 0 18 3.5 64 78 12 33 0.44 0.30 1.00 0.00 0.50 0 0 0 15 6.5 53 59 5 27 0.89 0.90 1.00 0.67 1.00 0 110 110 29 6.5 48 72 8 21 0.44 0.50 1.00 0.00 0.00 0 131 131 16 10.5 51 70 6 28 0.56 0.30 1.00 1.00 0.50 0 167 0 19 8.5 47 63 17 19 0.89 0.60 0.83 0.67 0.50 0 0 0 22 8 59 63 4 31 0.67 0.20 1.00 0.33 0.50 0 137 0 16 10 62 71 5 27 0.89 0.40 0.83 1.00 1.00 0 0 86 23 10 62 74 4 33 1.00 0.50 0.83 0.67 0.50 0 121 121 23 9.5 51 67 5 27 0.78 0.40 0.83 0.67 0.50 0 149 0 19 9 64 66 5 23 0.44 0.00 0.00 0.00 0.00 0 168 0 4 10 52 62 6 23 0.89 0.20 1.00 0.33 1.00 0 140 0 20 7.5 67 80 4 30 0.89 0.50 1.00 0.67 1.00 0 0 88 24 4.5 50 73 4 29 0.89 0.30 1.00 0.67 0.50 0 168 168 20 4.5 54 67 4 35 0.44 0.00 0.00 0.00 0.00 0 94 94 4 0.5 58 61 6 27 1.00 0.50 0.83 1.00 1.00 0 51 51 24 6.5 56 73 8 16 0.89 0.60 0.83 0.33 1.00 0 0 0 22 4.5 63 74 10 23 0.67 0.30 0.83 0.00 0.50 0 145 145 16 5.5 31 32 4 26 0.33 0.00 0.00 0.00 0.00 0 66 66 3 5 65 69 5 33 0.78 0.30 0.67 0.00 0.00 0 0 85 15 6 71 69 4 30 0.89 0.50 1.00 0.67 1.00 0 109 0 24 4 50 84 4 30 0.78 0.40 0.67 0.00 1.00 0 0 0 17 8 57 64 4 28 0.78 0.50 0.83 0.67 0.50 0 0 102 20 10.5 47 58 16 17 0.89 0.70 1.00 1.00 0.50 0 0 0 27 6.5 47 59 7 24 0.78 0.80 1.00 0.67 1.00 0 0 86 26 8 57 78 4 23 0.78 0.60 1.00 0.33 1.00 0 0 114 23 8.5 43 57 4 31 0.67 0.40 0.83 0.33 0.50 0 164 0 17 5.5 41 60 14 26 0.89 0.50 0.83 0.33 0.00 0 119 119 20 7 63 68 5 25 0.89 0.50 1.00 0.00 1.00 0 126 0 22 5 63 68 5 26 0.78 0.30 1.00 0.33 1.00 0 132 132 19 3.5 56 73 5 28 1.00 0.60 1.00 0.00 1.00 0 142 142 24 5 51 69 5 26 1.00 0.30 0.67 0.67 0.50 0 83 0 19 9 50 67 7 28 0.78 0.60 0.83 1.00 0.50 0 0 94 23 8.5 22 60 19 27 0.78 0.30 0.33 0.33 1.00 0 0 0 15 5 41 65 16 21 0.89 0.70 1.00 0.67 1.00 0 166 166 27 9.5 59 66 4 25 0.89 0.70 1.00 1.00 1.00 0 0 0 26 3 56 74 4 30 0.67 0.60 0.67 1.00 1.00 0 0 64 22 1.5 66 81 7 28 1.00 0.50 1.00 0.33 0.00 0 93 0 22 6 53 72 9 19 0.67 0.50 0.83 0.33 0.50 0 0 0 18 0.5 42 55 5 27 0.56 0.40 0.67 0.00 1.00 0 0 105 15 6.5 52 49 14 27 0.78 0.40 1.00 0.33 1.00 0 0 49 22 7.5 54 74 4 19 1.00 0.70 1.00 1.00 1.00 0 0 0 27 4.5 44 53 16 28 0.67 0.20 0.17 0.00 0.00 0 0 95 10 8 62 64 10 28 0.78 0.50 0.83 0.67 0.50 0 0 102 20 9 53 65 5 28 0.56 0.40 0.83 0.67 0.00 0 0 0 17 7.5 50 57 6 23 1.00 0.20 1.00 0.67 1.00 0 0 63 23 8.5 36 51 4 26 0.89 0.50 0.67 0.67 0.00 0 0 0 19 7 76 80 4 28 0.44 0.40 0.50 0.00 1.00 0 0 0 13 9.5 66 67 4 27 1.00 0.70 0.67 1.00 1.00 0 0 117 27 6.5 62 70 5 30 0.89 0.60 0.83 0.67 0.00 0 0 57 23 9.5 59 74 4 20 0.78 0.40 0.83 0.00 0.00 0 0 0 16 6 47 75 4 27 0.89 0.50 1.00 0.67 1.00 0 0 73 25 8 55 70 5 25 0.11 0.00 0.17 0.00 0.00 0 0 0 2 9.5 58 69 4 28 0.89 0.70 1.00 0.67 1.00 0 0 0 26 8 60 65 4 26 0.89 0.40 0.67 0.67 1.00 0 0 105 20 8 44 55 5 28 1.00 0.50 0.67 1.00 1.00 0 117 0 23 9 57 71 8 21 0.89 0.60 0.83 0.67 0.50 0 0 0 22 5 45 65 15 11 1.00 0.80 0.50 0.67 0.50 0 0 31 24
Names of X columns:
Ex AMS.I AMS.E AMS.A SOFTSTATTOT Calculation Algebraic_Reasoning Graphical_Interpretation Proportionality_and_Ratio Estimation lfm_year lfm_course lfm_gender NUMERACYTOT
Sample Range:
(leave blank to include all observations)
From:
To:
Column Number of Endogenous Series
(?)
Fixed Seasonal Effects
Do not include Seasonal Dummies
Do not include Seasonal Dummies
Include Seasonal Dummies
Type of Equation
No Linear Trend
No Linear Trend
Linear Trend
First Differences
Seasonal Differences (s)
First and Seasonal Differences (s)
Degree of Predetermination (lagged endogenous variables)
Degree of Seasonal Predetermination
Seasonality
12
1
2
3
4
5
6
7
8
9
10
11
12
Chart options
R Code
par3 <- 'No Linear Trend' par2 <- 'Do not include Seasonal Dummies' par1 <- '1' library(lattice) library(lmtest) n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test par1 <- as.numeric(par1) x <- t(y) k <- length(x[1,]) n <- length(x[,1]) x1 <- cbind(x[,par1], x[,1:k!=par1]) mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1]) colnames(x1) <- mycolnames #colnames(x)[par1] x <- x1 if (par3 == 'First Differences'){ x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep=''))) for (i in 1:n-1) { for (j in 1:k) { x2[i,j] <- x[i+1,j] - x[i,j] } } x <- x2 } if (par2 == 'Include Monthly Dummies'){ x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep =''))) for (i in 1:11){ x2[seq(i,n,12),i] <- 1 } x <- cbind(x, x2) } if (par2 == 'Include Quarterly Dummies'){ x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep =''))) for (i in 1:3){ x2[seq(i,n,4),i] <- 1 } x <- cbind(x, x2) } k <- length(x[1,]) if (par3 == 'Linear Trend'){ x <- cbind(x, c(1:n)) colnames(x)[k+1] <- 't' } x k <- length(x[1,]) df <- as.data.frame(x) (mylm <- lm(df)) (mysum <- summary(mylm)) if (n > n25) { kp3 <- k + 3 nmkm3 <- n - k - 3 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3)) numgqtests <- 0 numsignificant1 <- 0 numsignificant5 <- 0 numsignificant10 <- 0 for (mypoint in kp3:nmkm3) { j <- 0 numgqtests <- numgqtests + 1 for (myalt in c('greater', 'two.sided', 'less')) { j <- j + 1 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value } if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1 } gqarr } bitmap(file='test0.png') plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index') points(x[,1]-mysum$resid) grid() dev.off() bitmap(file='test1.png') plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index') grid() dev.off() bitmap(file='test2.png') hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals') grid() dev.off() bitmap(file='test3.png') densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals') dev.off() bitmap(file='test4.png') qqnorm(mysum$resid, main='Residual Normal Q-Q Plot') qqline(mysum$resid) grid() dev.off() (myerror <- as.ts(mysum$resid)) bitmap(file='test5.png') dum <- cbind(lag(myerror,k=1),myerror) dum dum1 <- dum[2:length(myerror),] dum1 z <- as.data.frame(dum1) z plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals') lines(lowess(z)) abline(lm(z)) grid() dev.off() bitmap(file='test6.png') acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function') grid() dev.off() bitmap(file='test7.png') pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function') grid() dev.off() bitmap(file='test8.png') opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(mylm, las = 1, sub='Residual Diagnostics') par(opar) dev.off() if (n > n25) { bitmap(file='test9.png') plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint') grid() dev.off() } load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE) a<-table.row.end(a) myeq <- colnames(x)[1] myeq <- paste(myeq, '[t] = ', sep='') for (i in 1:k){ if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '') myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ') if (rownames(mysum$coefficients)[i] != '(Intercept)') { myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='') if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='') } } myeq <- paste(myeq, ' + e[t]') a<-table.row.start(a) a<-table.element(a, myeq) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Variable',header=TRUE) a<-table.element(a,'Parameter',header=TRUE) a<-table.element(a,'S.D.',header=TRUE) a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE) a<-table.element(a,'2-tail p-value',header=TRUE) a<-table.element(a,'1-tail p-value',header=TRUE) a<-table.row.end(a) for (i in 1:k){ a<-table.row.start(a) a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE) a<-table.element(a,signif(mysum$coefficients[i,1],6)) a<-table.element(a, signif(mysum$coefficients[i,2],6)) a<-table.element(a, signif(mysum$coefficients[i,3],4)) a<-table.element(a, signif(mysum$coefficients[i,4],6)) a<-table.element(a, signif(mysum$coefficients[i,4]/2,6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple R',1,TRUE) a<-table.element(a, signif(sqrt(mysum$r.squared),6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'R-squared',1,TRUE) a<-table.element(a, signif(mysum$r.squared,6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Adjusted R-squared',1,TRUE) a<-table.element(a, signif(mysum$adj.r.squared,6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (value)',1,TRUE) a<-table.element(a, signif(mysum$fstatistic[1],6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE) a<-table.element(a, signif(mysum$fstatistic[2],6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE) a<-table.element(a, signif(mysum$fstatistic[3],6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'p-value',1,TRUE) a<-table.element(a, signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residual Standard Deviation',1,TRUE) a<-table.element(a, signif(mysum$sigma,6)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Sum Squared Residuals',1,TRUE) a<-table.element(a, signif(sum(myerror*myerror),6)) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Time or Index', 1, TRUE) a<-table.element(a, 'Actuals', 1, TRUE) a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE) a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE) a<-table.row.end(a) for (i in 1:n) { a<-table.row.start(a) a<-table.element(a,i, 1, TRUE) a<-table.element(a,signif(x[i],6)) a<-table.element(a,signif(x[i]-mysum$resid[i],6)) a<-table.element(a,signif(mysum$resid[i],6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable4.tab') if (n > n25) { a<-table.start() a<-table.row.start(a) a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-values',header=TRUE) a<-table.element(a,'Alternative Hypothesis',3,header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'breakpoint index',header=TRUE) a<-table.element(a,'greater',header=TRUE) a<-table.element(a,'2-sided',header=TRUE) a<-table.element(a,'less',header=TRUE) a<-table.row.end(a) for (mypoint in kp3:nmkm3) { a<-table.row.start(a) a<-table.element(a,mypoint,header=TRUE) a<-table.element(a,signif(gqarr[mypoint-kp3+1,1],6)) a<-table.element(a,signif(gqarr[mypoint-kp3+1,2],6)) a<-table.element(a,signif(gqarr[mypoint-kp3+1,3],6)) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable5.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Description',header=TRUE) a<-table.element(a,'# significant tests',header=TRUE) a<-table.element(a,'% significant tests',header=TRUE) a<-table.element(a,'OK/NOK',header=TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'1% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant1,6)) a<-table.element(a,signif(numsignificant1/numgqtests,6)) if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'5% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant5,6)) a<-table.element(a,signif(numsignificant5/numgqtests,6)) if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'10% type I error level',header=TRUE) a<-table.element(a,signif(numsignificant10,6)) a<-table.element(a,signif(numsignificant10/numgqtests,6)) if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK' a<-table.element(a,dum) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable6.tab') }
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation