Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
51 56 67 69 57 56 55 63 67 65 47 76 64 68 64 65 71 63 60 68 72 70 61 61 62 71 71 51 56 70 73 76 68 48 52 60 59 57 79 60 60 59 62 59 61 71 57 66 63 69 58 59 48 66 73 67 61 68 75 62 69 58 60 74 55 62 63 69 58 58 68 72 62 62 65 69 66 72 62 75 58 66 55 47 72 62 64 64 19 50 68 70 79 69 71 48 73 74 66 71 74 78 75 53 60 70 69 65 78 78 59 72 70 63 63 71 74 67 66 62 80 73 67 61 73 74 32 69 69 84 64 58 59 78 57 60 68 68 73 69 67 60 65 66 74 81 72 55 49 74 53 64 65 57 51 80 67 70 74 75 70 69 65 55 71
Data Y:
23 22 21 25 30 17 27 23 23 18 18 23 19 15 20 16 24 25 25 19 19 16 19 19 23 21 22 19 20 20 3 23 23 20 15 16 7 24 17 24 24 19 25 20 28 23 27 18 28 21 19 23 27 22 28 25 21 22 28 20 29 25 25 20 20 16 20 20 23 18 25 18 19 25 25 25 24 19 26 10 17 13 17 30 25 4 16 21 23 22 17 20 20 22 16 23 0 18 25 23 12 18 24 11 18 23 24 29 18 15 29 16 19 22 16 23 23 19 4 20 24 20 4 24 22 16 3 15 24 17 20 27 26 23 17 20 22 19 24 19 23 15 27 26 22 22 18 15 22 27 10 20 17 23 19 13 27 23 16 25 2 26 20 23 22
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
x <- x[!is.na(y)] y <- y[!is.na(y)] y <- y[!is.na(x)] x <- x[!is.na(x)] bitmap(file='test1.png') histx <- hist(x, plot=FALSE) histy <- hist(y, plot=FALSE) maxcounts <- max(c(histx$counts, histx$counts)) xrange <- c(min(x),max(x)) yrange <- c(min(y),max(y)) nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE) par(mar=c(4,4,1,1)) plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main) par(mar=c(0,4,1,1)) barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0) par(mar=c(4,0,1,1)) barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE) dev.off() lx = length(x) makebiased = (lx-1)/lx varx = var(x)*makebiased vary = var(y)*makebiased corxy <- cor.test(x,y,method='pearson', na.rm = T) cxy <- as.matrix(corxy$estimate)[1,1] load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Statistic',1,TRUE) a<-table.element(a,'Variable X',1,TRUE) a<-table.element(a,'Variable Y',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm','Mean',''),header=TRUE) a<-table.element(a,mean(x)) a<-table.element(a,mean(y)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/biased.htm','Biased Variance',''),header=TRUE) a<-table.element(a,varx) a<-table.element(a,vary) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/biased1.htm','Biased Standard Deviation',''),header=TRUE) a<-table.element(a,sqrt(varx)) a<-table.element(a,sqrt(vary)) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/covariance.htm','Covariance',''),header=TRUE) a<-table.element(a,cov(x,y),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/pearson_correlation.htm','Correlation',''),header=TRUE) a<-table.element(a,cxy,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/coeff_of_determination.htm','Determination',''),header=TRUE) a<-table.element(a,cxy*cxy,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,hyperlink('http://www.xycoon.com/ttest_statistic.htm','T-Test',''),header=TRUE) a<-table.element(a,as.matrix(corxy$statistic)[1,1],2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value (2 sided)',header=TRUE) a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value (1 sided)',header=TRUE) a<-table.element(a,p2/2,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Degrees of Freedom',header=TRUE) a<-table.element(a,lx-2,2) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Number of Observations',header=TRUE) a<-table.element(a,lx,2) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') library(moments) library(nortest) jarque.x <- jarque.test(x) jarque.y <- jarque.test(y) if(lx>7) { ad.x <- ad.test(x) ad.y <- ad.test(y) } a<-table.start() a<-table.row.start(a) a<-table.element(a,'Normality Tests',1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('jarque.x'),'</pre>',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('jarque.y'),'</pre>',sep='')) a<-table.row.end(a) if(lx>7) { a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('ad.x'),'</pre>',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,paste('<pre>',RC.texteval('ad.y'),'</pre>',sep='')) a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable1.tab') library(car) bitmap(file='test2.png') qq.plot(x,main='QQplot of variable x') dev.off() bitmap(file='test3.png') qq.plot(y,main='QQplot of variable y') dev.off()
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation