Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
68 ONWAAR 55 ONWAAR ONWAAR 39 32 ONWAAR ONWAAR 62 ONWAAR 33 ONWAAR 52 62 ONWAAR ONWAAR 77 ONWAAR 76 ONWAAR 41 ONWAAR 48 ONWAAR 63 ONWAAR 30 78 ONWAAR 19 ONWAAR 31 ONWAAR ONWAAR 66 35 ONWAAR ONWAAR 42 45 ONWAAR ONWAAR 21 ONWAAR 25 44 ONWAAR ONWAAR 69 ONWAAR 54 ONWAAR 74 ONWAAR 80 42 ONWAAR ONWAAR 61 41 ONWAAR 46 ONWAAR 39 ONWAAR ONWAAR 34 ONWAAR 51 ONWAAR 42 ONWAAR 31 39 ONWAAR ONWAAR 20 ONWAAR 49 53 ONWAAR ONWAAR 31 ONWAAR 39 ONWAAR 54 ONWAAR 49 ONWAAR 34 46 ONWAAR ONWAAR 55 ONWAAR 42 50 ONWAAR ONWAAR 13 ONWAAR 37 ONWAAR 25 ONWAAR 30 ONWAAR 28 ONWAAR 45 ONWAAR 35 28 ONWAAR ONWAAR 41 6 ONWAAR ONWAAR 45 ONWAAR 73 17 ONWAAR 40 ONWAAR ONWAAR 64 37 ONWAAR ONWAAR 25 65 ONWAAR ONWAAR 100 ONWAAR 28 35 ONWAAR 56 ONWAAR 29 ONWAAR 43 ONWAAR ONWAAR 59 50 ONWAAR ONWAAR 3 59 ONWAAR ONWAAR 27 61 ONWAAR 28 ONWAAR ONWAAR 51 35 ONWAAR 29 ONWAAR 48 ONWAAR ONWAAR 25 44 ONWAAR ONWAAR 64 ONWAAR 32 20 ONWAAR 28 ONWAAR 34 ONWAAR ONWAAR 31 ONWAAR 26 ONWAAR 58 23 ONWAAR ONWAAR 21 21 ONWAAR ONWAAR 33 ONWAAR 16 ONWAAR 20 ONWAAR 37 ONWAAR 35 33 ONWAAR ONWAAR 27 ONWAAR 41 ONWAAR 40 35 ONWAAR 28 ONWAAR 32 ONWAAR 22 ONWAAR 44 ONWAAR 27 ONWAAR
Names of X columns:
A B
Column number of first sample
Column number of second sample
Confidence
Alternative
two.sided
two.sided
less
greater
Are observations paired?
unpaired
unpaired
paired
Null Hypothesis
Chart options
Title:
R Code
par1 <- as.numeric(par1) #column number of first sample par2 <- as.numeric(par2) #column number of second sample par3 <- as.numeric(par3) #confidence (= 1 - alpha) if (par5 == 'unpaired') paired <- FALSE else paired <- TRUE par6 <- as.numeric(par6) #H0 z <- t(y) if (par1 == par2) stop('Please, select two different column numbers') if (par1 < 1) stop('Please, select a column number greater than zero for the first sample') if (par2 < 1) stop('Please, select a column number greater than zero for the second sample') if (par1 > length(z[1,])) stop('The column number for the first sample should be smaller') if (par2 > length(z[1,])) stop('The column number for the second sample should be smaller') if (par3 <= 0) stop('The confidence level should be larger than zero') if (par3 >= 1) stop('The confidence level should be smaller than zero') (r.t <- t.test(z[,par1],z[,par2],var.equal=TRUE,alternative=par4,paired=paired,mu=par6,conf.level=par3)) (v.t <- var.test(z[,par1],z[,par2],conf.level=par3)) (r.w <- t.test(z[,par1],z[,par2],var.equal=FALSE,alternative=par4,paired=paired,mu=par6,conf.level=par3)) (w.t <- wilcox.test(z[,par1],z[,par2],alternative=par4,paired=paired,mu=par6,conf.level=par3)) (ks.t <- ks.test(z[,par1],z[,par2],alternative=par4)) m1 <- mean(z[,par1],na.rm=T) m2 <- mean(z[,par2],na.rm=T) mdiff <- m1 - m2 newsam1 <- z[!is.na(z[,par1]),par1] newsam2 <- z[,par2]+mdiff newsam2 <- newsam2[!is.na(newsam2)] (ks1.t <- ks.test(newsam1,newsam2,alternative=par4)) mydf <- data.frame(cbind(z[,par1],z[,par2])) colnames(mydf) <- c('Variable 1','Variable 2') bitmap(file='test1.png') boxplot(mydf, notch=TRUE, ylab='value',main=main) dev.off() bitmap(file='test2.png') qqnorm(z[,par1],main='Normal QQplot - Variable 1') qqline(z[,par1]) dev.off() bitmap(file='test3.png') qqnorm(z[,par2],main='Normal QQplot - Variable 2') qqline(z[,par2]) dev.off() load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Two Sample t-test (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) if(!paired){ a<-table.row.start(a) a<-table.element(a,'Mean of Sample 1',header=TRUE) a<-table.element(a,r.t$estimate[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Mean of Sample 2',header=TRUE) a<-table.element(a,r.t$estimate[[2]]) a<-table.row.end(a) } else { a<-table.row.start(a) a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE) a<-table.element(a,r.t$estimate) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a,'t-stat',header=TRUE) a<-table.element(a,r.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,r.t$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,r.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,r.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,r.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(r.t$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',r.t$conf.int[1],',',r.t$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'F-test to compare two variances',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'F-stat',header=TRUE) a<-table.element(a,v.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,v.t$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,v.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,v.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,v.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(v.t$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',v.t$conf.int[1],',',v.t$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Welch Two Sample t-test (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) if(!paired){ a<-table.row.start(a) a<-table.element(a,'Mean of Sample 1',header=TRUE) a<-table.element(a,r.w$estimate[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Mean of Sample 2',header=TRUE) a<-table.element(a,r.w$estimate[[2]]) a<-table.row.end(a) } else { a<-table.row.start(a) a<-table.element(a,'Difference: Mean1 - Mean2',header=TRUE) a<-table.element(a,r.w$estimate) a<-table.row.end(a) } a<-table.row.start(a) a<-table.element(a,'t-stat',header=TRUE) a<-table.element(a,r.w$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'df',header=TRUE) a<-table.element(a,r.w$parameter[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,r.w$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,r.w$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,r.w$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI Level',header=TRUE) a<-table.element(a,attr(r.w$conf.int,'conf.level')) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'CI',header=TRUE) a<-table.element(a,paste('[',r.w$conf.int[1],',',r.w$conf.int[2],']',sep='')) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,paste('Wicoxon rank sum test with continuity correction (',par5,')',sep=''),2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'W',header=TRUE) a<-table.element(a,w.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,w.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'H0 value',header=TRUE) a<-table.element(a,w.t$null.value[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Alternative',header=TRUE) a<-table.element(a,w.t$alternative) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Kolmogorov-Smirnov Test to compare <i>Distributions</i> of two Samples',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'KS Statistic',header=TRUE) a<-table.element(a,ks.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,ks.t$p.value) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Kolmogorov-Smirnov Test to compare <i>Distributional Shape</i> of two Samples',2,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'KS Statistic',header=TRUE) a<-table.element(a,ks1.t$statistic[[1]]) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'p-value',header=TRUE) a<-table.element(a,ks1.t$p.value) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
1 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation