Send output to:
Browser Blue - Charts White
Browser Black/White
CSV
Data X:
11.3 1 9.6 1 16.1 1 13.4 1 12.7 1 12.3 1 7.9 1 12.3 1 11.6 1 6.7 1 12.1 1 5.7 1 8 1 13.3 1 9.1 1 12.2 1 8.8 1 14.6 1 12.6 1 9.9 1 10.5 1 13.4 1 10.9 1 4.3 1 10.3 1 11.8 1 11.2 1 11.4 1 8.6 1 13.2 1 12.6 1 5.6 1 9.9 1 8.8 1 7.7 1 9 1 7.3 1 11.4 1 13.6 1 7.9 1 10.7 1 10.3 1 8.3 1 9.6 1 14.2 1 8.5 1 13.5 1 4.9 1 6.4 1 9.6 1 11.6 1 11.1 1 16.6 1 12.6 1 18.9 1 11.6 1 14.6 1 13.85 1 14.85 1 11.75 1 18.45 1 15.9 1 19.9 1 10.95 1 18.45 1 15.1 1 15 1 11.35 1 15.95 1 18.1 1 14.6 1 17.6 1 15.35 1 13.4 1 13.9 1 15.25 1 12.9 1 16.1 1 17.35 1 13.15 1 12.15 1 12.6 1 10.35 1 15.4 1 9.6 1 18.2 1 13.6 1 14.85 1 14.1 1 14.9 1 16.25 1 13.6 1 15.65 1 14.6 1 12.65 1 11.9 1 19.2 1 16.6 1 11.2 1 13.2 1 15.85 1 11.15 1 15.65 1 7.65 1 15.2 1 15.6 1 13.1 1 11.85 1 12.4 1 11.4 1 14.9 1 19.9 1 11.2 1 14.6 1 14.75 1 15.15 1 16.85 1 7.85 1 12.6 1 7.85 1 10.95 1 12.35 1 9.95 1 14.9 1 16.65 1 13.4 1 13.95 1 15.7 1 16.85 1 10.95 1 15.35 1 12.2 1 15.1 1 17.75 1 15.2 1 16.65 1 8.1 1 12.9 0 7.4 0 12.2 0 12.8 0 7.4 0 6.7 0 12.6 0 14.8 0 13.3 0 11.1 0 8.2 0 11.4 0 6.4 0 10.6 0 12 0 6.3 0 11.9 0 9.3 0 10 0 6.4 0 13.8 0 10.8 0 13.8 0 11.7 0 10.9 0 9.9 0 11.5 0 8.3 0 11.7 0 6.1 0 9 0 9.7 0 10.8 0 10.3 0 10.4 0 9.3 0 11.8 0 5.9 0 11.4 0 13 0 10.8 0 11.3 0 11.8 0 12.7 0 10.9 0 13.3 0 10.1 0 14.3 0 9.3 0 12.5 0 7.6 0 15.9 0 9.2 0 11.1 0 13 0 14.5 0 12.3 0 11.4 0 7.3 0 12.6 0 13 0 13.2 0 7.7 0 4.35 0 12.7 0 18.1 0 17.85 0 17.1 0 19.1 0 16.1 0 13.35 0 18.4 0 14.7 0 10.6 0 12.6 0 16.2 0 13.6 0 14.1 0 14.5 0 16.15 0 14.75 0 14.8 0 12.45 0 12.65 0 17.35 0 8.6 0 18.4 0 16.1 0 17.75 0 15.25 0 17.65 0 15.6 0 16.35 0 17.65 0 13.6 0 11.7 0 14.35 0 14.75 0 18.25 0 9.9 0 16 0 18.25 0 16.85 0 18.95 0 15.6 0 17.1 0 16.1 0 15.4 0 15.4 0 13.35 0 19.1 0 7.6 0 19.1 0 14.75 0 19.25 0 13.6 0 12.75 0 9.85 0 15.25 0 11.9 0 16.35 0 12.4 0 14.35 0 18.15 0 17.75 0 12.35 0 15.6 0 19.3 0 17.1 0 18.4 0 19.05 0 18.55 0 19.1 0 12.85 0 9.5 0 4.5 0 13.6 0 11.7 0 13.35 0 17.75 0 17.6 0 14.05 0 16.1 0 13.35 0 11.85 0 11.95 0 13.2 0 7.7 0 14.6 0
Names of X columns:
TOT B/S
Response Variable (column number)
Factor Variable (column number)
Include Intercept Term ?
FALSE
TRUE
FALSE
Chart options
Title:
Label y-axis:
Label x-axis:
R Code
cat1 <- as.numeric(par1) # cat2<- as.numeric(par2) # intercept<-as.logical(par3) x <- t(x) x1<-as.numeric(x[,cat1]) f1<-as.character(x[,cat2]) xdf<-data.frame(x1,f1) (V1<-dimnames(y)[[1]][cat1]) (V2<-dimnames(y)[[1]][cat2]) names(xdf)<-c('Response', 'Treatment') if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) ) (aov.xdf<-aov(lmxdf) ) (anova.xdf<-anova(lmxdf) ) load(file='createtable') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'means',,TRUE) for(i in 1:length(lmxdf$coefficients)){ a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE) } a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable.tab') a<-table.start() a<-table.row.start(a) a<-table.element(a,'ANOVA Statistics', 5+1,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ',,TRUE) a<-table.element(a, 'Df',,FALSE) a<-table.element(a, 'Sum Sq',,FALSE) a<-table.element(a, 'Mean Sq',,FALSE) a<-table.element(a, 'F value',,FALSE) a<-table.element(a, 'Pr(>F)',,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, V2,,TRUE) a<-table.element(a, anova.xdf$Df[1],,FALSE) a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, 'Residuals',,TRUE) a<-table.element(a, anova.xdf$Df[2],,FALSE) a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE) a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE) a<-table.element(a, ' ',,FALSE) a<-table.element(a, ' ',,FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable1.tab') bitmap(file='anovaplot.png') boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1) dev.off() if(intercept==TRUE){ 'Tukey Plot' thsd<-TukeyHSD(aov.xdf) bitmap(file='TukeyHSDPlot.png') plot(thsd) dev.off() } if(intercept==TRUE){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a, ' ', 1, TRUE) for(i in 1:4){ a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE) } a<-table.row.end(a) for(i in 1:length(rownames(thsd[[1]]))){ a<-table.row.start(a) a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE) for(j in 1:4){ a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE) } a<-table.row.end(a) } a<-table.end(a) table.save(a,file='mytable2.tab') } if(intercept==FALSE){ a<-table.start() a<-table.row.start(a) a<-table.element(a,'TukeyHSD Message', 1,TRUE) a<-table.row.end(a) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable2.tab') } library(car) lt.lmxdf<-leveneTest(lmxdf) a<-table.start() a<-table.row.start(a) a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE) a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ', 1, TRUE) for (i in 1:3){ a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,'Group', 1, TRUE) for (i in 1:3){ a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE) } a<-table.row.end(a) a<-table.row.start(a) a<-table.element(a,' ', 1, TRUE) a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE) a<-table.element(a,' ', 1, FALSE) a<-table.element(a,' ', 1, FALSE) a<-table.row.end(a) a<-table.end(a) table.save(a,file='mytable3.tab')
Compute
Summary of computational transaction
Raw Input
view raw input (R code)
Raw Output
view raw output of R engine
Computing time
0 seconds
R Server
Big Analytics Cloud Computing Center
Click here to blog (archive) this computation